Difference between revisions of "Team:Macquarie Australia/Description"

 
(48 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Macquarie Australia/CSS}}
+
{{Macquarie_Australia/NavBar}}
  
 
<html>
 
<html>
  
 +
    <link href="https://2018.igem.org/Team:Macquarie_Australia/CSS_Navbar?action=raw&ctype=text/css" rel="stylesheet">
 +
    <link href="https://fonts.googleapis.com/css?family=Raleway" rel="stylesheet">
  
  
<link href="https://fonts.googleapis.com/css?family=Quicksand:300,400|Roboto:400,400i" rel="stylesheet">  
+
    <link href="https://fonts.googleapis.com/css?family=Raleway" rel="stylesheet">
  
  
  
<head>
+
    <link href="https://fonts.googleapis.com/css?family=Quicksand:300,400|Roboto:400,400i" rel="stylesheet">  
<meta name="viewport" content="width=device-width, initial-scale=1">
+
<style>
+
DO NOT REMOVE
+
#content {
+
    width: 100vw;
+
    margin: 0;
+
    padding: 0;
+
}
+
  
/* Clear the default wiki settings */
 
 
#home_logo, #sideMenu { display:none; }
 
#sideMenu, #top_title, .patrollink  {display:none;}
 
#content { width:100%; padding:0px;  margin-top:-7px; margin-left:0px;}
 
body {background-color: #f2f2f2; }
 
#bodyContent h1, #bodyContent h2, #bodyContent h3, #bodyContent h4, #bodyContent h5 { margin-bottom: 0px; }
 
  
/********************************* DEFAULT WIKI SETTINGS  ********************************/
 
/*FROM STYLESHEET*/
 
   
 
.dropdown-menu {
 
  position: absolute;
 
  top: 100%;
 
  left: 0;
 
  z-index: 1000;
 
  display: none;
 
  float: left;
 
  min-width: 160px;
 
  padding: 5px 0;
 
  margin: 2px 0 0;
 
  font-size: 14px;
 
  text-align: left;
 
  list-style: none;
 
  background-color: #fff;
 
  -webkit-background-clip: padding-box;
 
          background-clip: padding-box;
 
  border: 1px solid #ccc;
 
  border: 1px solid rgba(0, 0, 0, .15);
 
  border-radius: 4px;
 
  -webkit-box-shadow: 0 6px 12px rgba(0, 0, 0, .175);
 
          box-shadow: 0 6px 12px rgba(0, 0, 0, .175);
 
}
 
/* Prevents header buttons fron turning dark upon hover */
 
    .navbar-default .navbar-nav > li > a:hover,
 
.navbar-default .navbar-nav > li > a:focus {
 
  color: #333;
 
  background-color: transparent;
 
}
 
  
/* Makes menu buttons stick to right hand side of screen */
+
    <head>
@media (min-width: 768px) {
+
        <meta name="viewport" content="width=device-width, initial-scale=1">
  .navbar-left {
+
    float: left !important;
+
  }
+
  .navbar-right {
+
    float: right !important;
+
    margin-right: -5px;
+
  }
+
  .navbar-right ~ .navbar-right {
+
    margin-right: 0;
+
  }
+
}
+
  
/* Makes drop-downs appear left to right instead of up to down */
+
        <style>
@media (min-width: 768px) {
+
            DO NOT REMOVE
  .navbar-nav {
+
            #content {
    float: left;
+
                width: 100vw;
    margin: 0;
+
                margin: 0;
  }
+
                padding: 0;
  .navbar-nav > li {
+
            }
    float: left;
+
  }
+
  .navbar-nav > li > a {
+
    padding-top: 15px;
+
    padding-bottom: 15px;
+
  }
+
}
+
  
/* Formatting navbar */
+
            /* Clear the default wiki settings */
.navbar-fixed-top {
+
            #home_logo, #sideMenu { display:none; }
  top: 0;
+
            #sideMenu, #top_title, .patrollink  {display:none;}
  border-width: 0 0 1px;
+
            #content { width:100%; padding:0px; margin-top:-7px; margin-left:0px;}
}
+
            body {background-color: #f2f2f2; }
.navbar-fixed-top,
+
            #bodyContent h1, #bodyContent h2, #bodyContent h3, #bodyContent h4, #bodyContent h5 { margin-bottom: 0px; }
.navbar-fixed-bottom {
+
  position: fixed;
+
  right: 0;
+
  left: 0;
+
  z-index: 1030;
+
}
+
@media (min-width: 768px) {
+
  .container > .navbar-header,
+
  .container-fluid > .navbar-header,
+
  .container > .navbar-collapse,
+
  .container-fluid > .navbar-collapse {
+
    margin-right: 0;
+
    margin-left: 0;
+
  }
+
}
+
a {
+
  color: #337ab7;
+
  text-decoration: none;
+
}
+
@media (min-width: 768px) {
+
  .navbar-header {
+
    float: left;
+
  }
+
}
+
.nav > li > a {
+
  position: relative;
+
  display: block;
+
  padding: 10px 15px;
+
}
+
.nav {
+
  padding-left: 0;
+
  margin-bottom: 0;
+
  list-style: none;
+
}
+
.dropdown-menu > li > a {
+
  display: block;
+
  padding: 3px 20px;
+
  clear: both;
+
  font-weight: normal;
+
  line-height: 1.42857143;
+
  color: #333;
+
  white-space: nowrap;
+
}
+
.dropup,
+
.dropdown {
+
  position: relative;
+
}
+
.caret {
+
  display: inline-block;
+
  width: 0;
+
  height: 0;
+
  margin-left: 2px;
+
  vertical-align: middle;
+
  border-top: 4px dashed;
+
  border-top: 4px solid \9;
+
  border-right: 4px solid transparent;
+
  border-left: 4px solid transparent;
+
}
+
.img-responsive,
+
.thumbnail > img,
+
.thumbnail a > img,
+
.carousel-inner > .item > img,
+
.carousel-inner > .item > a > img {
+
  display: block;
+
  max-width: 100%;
+
  height: auto;
+
}
+
  
  
  
/*END FROM SPREADHEET */
+
            /* Unique to page */
 +
            body {
 +
                background-color: #f2f2f2;
 +
                width: 100%;
 +
                z-index: 3;
 +
            }
  
 +
            #bodyContent {
 +
                padding-right: 0px;
 +
                padding-top: 50px;
 +
                width: 100 vw;
 +
                background-color: #f2f2f2;
 +
            }
  
 +
            /* Wrapper for the content */
 +
            .content_wrapper {
 +
                width: 85%%;
 +
                margin-left: 150px;
 +
                padding: 0px;
 +
                float: left;
 +
                background-color: #f2f2f2;
 +
            }
  
  
  
/* Navbar */
+
            /* non numbered lists */
 +
            .content_wrapper ul {
 +
                padding: 0px 20px;
 +
                font-size: 13px;
 +
                font-family: 'Quicksand', sans-serif;
 +
            }
 +
        </style>
  
.some-padding {
 
  padding-top: 20px;
 
}
 
  
 +
    </head>
  
/*adds necessary spacing to the navbar so links display correctly below the black iGEM navbar */
 
  
.navbar-default {
 
  background-color: white;
 
  border-color: rgba(255, 255, 255, 0.3);
 
  font-family: 'Quicksand', sans-serif;
 
  font-weight: 300;
 
  -webkit-transition: all 0.35s;
 
  -moz-transition: all 0.35s;
 
  transition: all 0.35s;
 
}
 
  
.navbar-default .navbar-header .navbar-brand {
+
    <body>
  color: #52658F;
+
  font-family: 'Quicksand', sans-serif;
+
  font-weight: bold;
+
  font-size: 22px;
+
  display: inline-block;
+
}
+
  
 +
<div style="width: 50%; margin-left: auto; margin-right: auto; display: block;">
 +
<img src="https://static.igem.org/mediawiki/2018/8/8d/T--Macquarie_Australia--Description_Header.png" width="100%" height=auto>
 +
        </div>
 +
        <!-- ADD NEW CODE HERE-->
  
.navbar-default .navbar-header .navbar-brand:hover,
+
<!-- COPY AND PASTE everything between the lines for a new heading and block of content -->
.navbar-default .navbar-header .navbar-brand:focus {
+
<!-- ____________________________________________________________________________________________ -->
  color: #52658F;
+
}
+
  
.navbar-default .navbar-header .navbar-toggle {
 
  font-family: 'Quicksand', sans-serif;
 
  font-weight: 400;
 
  font-size: 14px;
 
  color: #333A56;
 
  text-transform: uppercase;
 
}
 
  
.navbar-default .nav > li > a,
+
<div style="width: 50%; margin-left: auto; margin-right: auto; display: block;">
.navbar-default .nav > li > a:focus {
+
    <h style= "font-size: 25px; font-weight: bold;">
  text-transform: uppercase;
+
  font-family: 'Quicksand', sans-serif;
+
  font-weight: 400;
+
  font-size: 14px;
+
  color: #222222;
+
}
+
  
.navbar-default .nav > li > a:hover,
 
.navbar-default .nav > li > a:focus:hover {
 
  color: #333A56;
 
}
 
  
.navbar-default .nav > li.active > a,
+
<!-- Heading goes here -->Abstract
.navbar-default .nav > li.active > a:focus {
+
  color: #333A56 !important;
+
  background-color: white;
+
}
+
  
.navbar-default .nav > li.active > a:hover,
+
    </h>
.navbar-default .nav > li.active > a:focus:hover {
+
    <p style="text-align: justify; font-size: 14px; font-family: 'Quicksand', sans-serif;">
  background-color: white;
+
}
+
  
.navbar-default .navbar-toggle {
 
  border: none;
 
}
 
  
.navbar-default .dropdown-menu > li > a:hover,
+
<!-- ENTER TEXT FOR THE PAGE HERE -->
.navbar-default .dropdown-menu > li > a:focus {
+
Nanocompartment production within common prokaryotic expression vectors is highly desirable, and an active area of research. These compartments can be used for the sequestration of cellular products such as proteins and small molecules, aiding the recombinant production of pharmaceuticals and fine chemicals. Additionally, confining cytotoxic compounds extends the utility of recombinant production by ensuring the survival of cells. As well as this, bulk isolation of compartments potentially simplifies purification procedures, while confining enzymes and metabolic pathways within enclosed compartments also aids biosynthetic efficiency, by bringing enzymes and substrates closer in proximity. Additionally, nanocompartments have also been investigated for use in slow release or targeted drug delivery, as well as improving drug bioavailability. Similarly, biological nanocompartments have applications in materials production, cosmetics, and agriculture. Presented herein, we engineer synthetic vesicles into <i>Escherichia coli</i> based upon the known spontaneous vesicle formation in plants and algae associated with the chlorophyll biosynthesis pathway. By mimicking this natural process within <i>E. coli</i>, we extend the aforementioned benefits of biological nanocompartments to a ubiquitous expression vector, thereby enhancing industrial and academic molecular biology and biotechnology.
  background-color: #F7F5E6;
+
  color: #333A56;
+
}
+
  
.navbar-default .dropdown-menu {
 
  border: none;
 
  outline: none;
 
  font-family: 'Quicksand', sans-serif;
 
  text-transform: uppercase;
 
  font-weight: 400 !important;
 
  font-size: 13.2px !important;
 
  color: #222222;
 
}
 
  
#sitelinks a {
 
  display: inline-block;
 
  border: 3px solid #fff;
 
  color: #fff;
 
  padding: 10px 20px;
 
  margin: 10px
 
}
 
  
#footer {
+
    </p>
  background: #333;
+
</div>
  text-align: center;
+
<br>
  color: #fff;
+
<br>
  line-height: 50px;
+
<!-- ____________________________________________________________________________________________ -->
}
+
  
#footer a {
 
  color: #fff;
 
}
 
  
  
  
   
 
/*END FROM STYLESHEET*/
 
  
body {
 
  background-color: #f2f2f2;
 
  width: 100%;
 
  z-index: 3;
 
}
 
  
  
#bodyContent {
 
  padding-right: 0px;
 
  padding-top: 50px;
 
  width: 100 vw;
 
  background-color: #f2f2f2;
 
}
 
  
#globalWrapper {
+
<!-- ____________________________________________________________________________________________ -->
  font-size: 100%;
+
  padding: 0px;
+
  margin: -10px -20px -20px -20px;
+
}
+
  
.navbar-collapse {
+
<div style="width: 50%; margin-left: auto; margin-right: auto; display: block;">
  padding-left: 0px;
+
    <h style= "font-size: 25px; font-weight: bold;">
}
+
  
#banner {
 
  margin-top: 50px;
 
}
 
  
#sideMenu {
+
<!-- Heading goes here -->Our Approach
  margin-top: 10px;
+
}
+
  
.dropdown-menu li:hover .sub-menu {
+
    </h>
  visibility: visible;
+
    <p style="text-align: justify; font-size: 14px; font-family: 'Quicksand', sans-serif;">
}
+
  
.dropdown:hover .dropdown-menu {
 
  display: block;
 
}
 
  
.navbar-nav .dropdown-menu,
+
<!-- ENTER TEXT FOR THE PAGE HERE -->
.navbar .dropdown-menu {
+
Ultimately, in order to produce vesicles within <i>E. coli</i>, we need to mimic chlorophyll biosynthesis. The metabolites and enzymes associated with this pathway spontaneously yield vesicles. It has long been known that <i>E. coli</i> produces protoporphyrin as a natural metabolite (Cox and Charles, 1973) and we will be using this as a starting point for chlorophyll biosynthesis in <i>E. coli</i>.  To do this, we will be using the genes from the chlorophyll biosynthesis pathway in <i>Chlamydomonas reinhardtii</i>, a well studied alga used widely as a model organism.  In support of this, we have carried out literature searches to identify the expression level necessary for each gene and optimised this through computer modelling.  Based on this research, several operons have been designed, each with the optimal expression levels necessary.  Once complete, each of these operons will be assembled into one plasmid designed around a standardised biobrick design.  This allows for vesicle formation to be introduced into any <i>E. coli</i> culture via a single transformation.
  margin-top: 0;
+
}
+
  
 +
<br>
 +
<br>
  
/********************************* CONTENT OF THE PAGE ********************************/
+
These cells, when grown in the absence of light, cause protochlorophyllide (pchlide) to accumulate into semi-crystalline aggregates with phospholipids and key enzymes. These aggregates, termed prolamellar bodies, are the foundation of our vesicles.  The cells are subsequently exposed to light, activating the <b>POR</b> (protochlorophyllide oxidoreductase) enzyme, resulting in the production of chlorophyll 𝛼 from pchlide (Bradbeer et al. 1974).  This conversion has been experimentally demonstrated to result in the spontaneous formation of phospholipid vesicles from the prolamellar bodies.  Thus, we will enable <i>E. coli</i> to produce vesicles, generating a tool that can be used in research and industry with profound implications.
  
  
/* Wrapper for the content */
 
  
.content_wrapper {
+
    </p>
  width: 85%%;
+
<img src="https://static.igem.org/mediawiki/2018/b/b4/T--Macquarie_Australia--general_project_graphic2.png" width="100%" height=auto>
  margin-left: 150px;
+
</div>
  padding: 0px;
+
<br>
  float: left;
+
<br>
  background-color: #f2f2f2;
+
<br>
}
+
<br>
 +
<br>
 +
<!-- ____________________________________________________________________________________________ -->
  
 +
<center>
 +
<a href="https://2018.igem.org/Team:Macquarie_Australia/Chlorofella">
 +
<img src="https://static.igem.org/mediawiki/2018/9/9d/T--Macquarie_Australia--chlorofella_logo.png"
 +
    onmouseover="this.src='https://static.igem.org/mediawiki/2018/e/ea/T--Macquarie_Australia--chlorofella_dark.png';"
 +
    onmouseout="this.src='https://static.igem.org/mediawiki/2018/9/9d/T--Macquarie_Australia--chlorofella_logo.png';"
 +
    width="150px" height=auto>
 +
</a>
 +
</center>
  
/*LAYOUT */
+
<br>
 +
<br>
  
 +
<!-- ____________________________________________________________________________________________ -->
  
.full_size {
+
<div style="width: 50%; margin-left: auto; margin-right: auto; display: block;">
  width: 100%;
+
    <h style= "font-size: 25px; font-weight: bold;">
}
+
  
.full_size img {
 
  padding: 10px 15px;
 
  width: 96.5%;
 
}
 
  
.half_size {
+
<!-- Heading goes here -->References
  width: 50%;
+
}
+
  
.half_size img {
+
    </h>
  padding: 10px 15px;
+
    <p style="text-align: justify; font-size: 14px; font-family: 'Quicksand', sans-serif;">
  width: 93%;
+
}
+
  
.img:hover {
 
  opacity: 1.0 !important;
 
}
 
  
 +
<!-- ENTER TEXT FOR THE PAGE HERE -->
 +
Cox, R. and Charles, H.P., 1973. Porphyrin-accumulating mutants of <i>Escherichia coli</i>. <i>Journal of bacteriology</i>, 113(1), pp.122-132.
 +
<br>
 +
<br>
 +
Bradbeer, J.W., Gyldenholm, A.O., Ireland, H.M.M., Smith, J.W., Rest, J. and Edge, H.J.W., 1974. Plastid development in primary leaves of Phaseolus vulgaris. <i>New phytologist</i>, 73(2), pp.271-279.
  
  
/*STYLING */
 
 
 
/* styling for the titles */
 
 
.content_wrapper h1,
 
.content_wrapper h2 {
 
  padding: 5px 15px;
 
  border-bottom: 0px;
 
  color: #72c9b6;
 
}
 
 
.content_wrapper h3,
 
.content_wrapper h4,
 
.content_wrapper h5,
 
.content_wrapper h6 {
 
  padding: 5px 15px;
 
  border-bottom: 0px;
 
  color: #000000;
 
}
 
 
 
/* font and text */
 
 
.content_wrapper p {
 
  padding: 0px 15px;
 
  font-size: 13px;
 
  font-family: 'Roboto', sans-serif;
 
}
 
 
 
/* Links */
 
 
.content_wrapper a {
 
  font-weight: bold;
 
  text-decoration: underline;
 
  text-decoration-color: #72c9b6;
 
  color: #72c9b6;
 
  -webkit-transition: all 0.4s ease;
 
  -moz-transition: all 0.4s ease;
 
  -ms-transition: all 0.4s ease;
 
  -o-transition: all 0.4s ease;
 
  transition: all 0.4s ease;
 
}
 
 
 
/* hover for the links */
 
 
.content_wrapper a:hover {
 
  text-decoration: none;
 
  color: #000000;
 
}
 
 
 
/* non numbered lists */
 
 
.content_wrapper ul {
 
  padding: 0px 20px;
 
  font-size: 13px;
 
  font-family: 'Quicksand', sans-serif;
 
}
 
 
 
/* numbered lists */
 
 
.content_wrapper ol {
 
  padding: 0px;
 
  font-size: 13px;
 
  font-family: 'Quicksand', sans-serif;
 
}
 
 
 
/* Table */
 
 
.content_wrapper table {
 
  width: 97%;
 
  margin: 15px 10px;
 
  border: 1px solid #d3d3d3;
 
  border-collapse: collapse;
 
}
 
 
 
/* table cells */
 
 
.content_wrapper td {
 
  padding: 10px;
 
  vertical-align: text-top;
 
  border: 1px solid #d3d3d3;
 
  border-collapse: collapse;
 
}
 
 
 
/* table headers */
 
 
.content_wrapper th {
 
  padding: 10px;
 
  vertical-align: text-top;
 
  border: 1px solid #d3d3d3;
 
  border-collapse: collapse;
 
  background-color: #f2f2f2;
 
}
 
 
 
/* Button class */
 
 
.button_click {
 
  margin: 10px auto;
 
  padding: 15px;
 
  width: 12%;
 
  text-align: center;
 
  font-weight: bold;
 
  background-color: #72c9b6;
 
  cursor: pointer;
 
  -webkit-transition: all 0.4s ease;
 
  -moz-transition: all 0.4s ease;
 
  -ms-transition: all 0.4s ease;
 
  -o-transition: all 0.4s ease;
 
  transition: all 0.4s ease;
 
}
 
 
 
/* button class on hover */
 
 
.button_click:hover {
 
  background-color: #000000;
 
  color: #72c9b6;
 
}
 
 
.top-pad {
 
  padding: 35px;
 
}
 
 
   
 
   
 
   
 
/* NEW STUFF FROM CURRENT PAGE
 
   
 
 
 
/* side columns */
 
.column.side.left {
 
width: 20%;
 
}
 
 
.column.side.right {
 
width: 20%;
 
}
 
 
/* main content */
 
.column.middle {
 
Width: 60%;
 
min-height: 850px;
 
 
/* change the background image of the main column */
 
background-size: contain;
 
background-position: center;
 
background-repeat: no-repeat;
 
}
 
 
/* Clear floats after the columns */
 
.row:after {
 
    content: "";
 
    display: table;
 
    clear: both;
 
}
 
 
/* footer*/
 
.footer {
 
    background-color: #f2f2f2;
 
    text-align: center;
 
    padding: 35px;
 
 
}
 
 
.bio_paragraph{
 
    box-sizing: border-box;
 
    width: 100%;
 
    float: right;   
 
}
 
 
.bio_page_grid{
 
    display: grid;
 
    grid-template-columns: 50% 50%;
 
    grid-template-rows: repeat(13, 50%);
 
}
 
 
/********************************* RESPONSIVE STYLING ********************************/
 
 
 
   
 
/*ROTATING SCRIPT */
 
.rotate {
 
    -webkit-animation: spin .8s infinite linear;
 
    animation: spin 20s infinite linear;
 
}
 
@-webkit-keyframes spin {
 
    100% { -webkit-transform: rotate(360deg); }
 
}
 
@-moz-keyframes spin {
 
    100% { -moz-transform: rotate(360deg); }
 
}
 
@keyframes spin {
 
    100% {
 
        -moz-transform:rotate(360deg);
 
        -o-transform:rotate(360deg);
 
        transform:rotate(360deg);
 
    }
 
}
 
 
   
 
   
 
</style>
 
 
 
</head>
 
 
 
 
<body>
 
 
 
  <nav class="navbar navbar-default navbar-fixed-top" style=" padding-top: 20px;">
 
    <div class="container-fluid">
 
      <div class="navbar-header">
 
 
        <a class="navbar-logo" href="https://2018.igem.org/Team:Macquarie_Australia">
 
          <image class="img-responsive, rotate" src="https://static.igem.org/mediawiki/2018/3/3f/T--Macquarie_Australia--Logo_onlyMembrane.png" height="80" width="80">
 
            </image>
 
        </a>
 
 
      </div>
 
      <div class="navbar-header" style="padding-top: 15px; padding-left: 15px;">
 
        <a class="navbar-logo" href="https://2018.igem.org/Team:Macquarie_Australia">
 
          <image class="img-responsive" src="https://static.igem.org/mediawiki/2018/2/25/T--Macquarie_Australia--Logo_onlyText.png" height="120" width="120">
 
            </image>
 
        </a>
 
      </div>
 
 
      <div id="navbar" class="navbar-collapse collapse">
 
        <ul class="nav navbar-nav navbar-right" style="margin-top: 15px;">
 
          <li class="dropdown">
 
            <a class="dropdown-toggle active" href="https://2018.igem.org/Team:Macquarie_Australia/Team">Team<span class="caret"></span></a>
 
            <ul class="dropdown-menu" style="left:0;">
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/Collaborations">Collaborations</a></li>
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/Attributions">Attributions</a></li>
 
            </ul>
 
          </li>
 
 
 
        <li class="dropdown">
 
            <a class="dropdown-toggle active" href="https://2018.igem.org/Team:Macquarie_Australia/Project">Project<span class="caret"></span></a>
 
            <ul class="dropdown-menu" style="left:0;">
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/Description">Description</a></li>
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/Results">Results</a></li>
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/Demonstrate">Demonstrate</a></li>
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/Improve">Improve</a></li>
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/Safety">Saftey</a></li>
 
            </ul>
 
          </li>
 
 
        <li class="dropdown">
 
            <a class="dropdown-toggle active" href="https://2018.igem.org/Team:Macquarie_Australia/Notebook">Notebook<span class="caret"></span></a>
 
            <ul class="dropdown-menu" style="left:0;">
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/Experiment">Experiment</a></li>
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/Interlab">Interlab</a></li>
 
            </ul>
 
          </li>
 
 
        <li class="dropdown">
 
            <a class="dropdown-toggle active" href="https://2018.igem.org/Team:Macquarie_Australia/Parts">Parts<span class="caret"></span></a>
 
            <ul class="dropdown-menu" style="left:0;">
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/Parts">Parts Summary</a></li>
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/Composite_Parts">Composite Parts</a></li>
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/Validation">Validation</a></li>
 
            </ul>
 
          </li>
 
 
          <li class="dropdown">
 
            <a class="dropdown-toggle active" href="https://2018.igem.org/Team:Macquarie_Australia/Human_practices">Human Practices <span class="caret"></span></a>
 
            <ul class="dropdown-menu">
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/human_practices">Human Practices</a></li>
 
              <li><a href="https://2018.igem.org/Team:Macquarie_Australia/human_practices">Integrated Practices</a></li>
 
            </ul>
 
          </li>
 
 
          <li class="dropdown">
 
            <a class="dropdown-toggle active" href="https://2018.igem.org/Team:Macquarie_Australia/safety">Saftey </a>
 
          </li>
 
        </ul>
 
      </div>
 
      <!-- /.navbar-collapse -->
 
    </div>
 
    <!-- /.container-fluid -->
 
    </nav>
 
 
 
<!-- NEW CODE -->
 
 
 
 
<div>
 
  
 +
    </p>
 
</div>
 
</div>
 
<div>
 
<img src = "https://static.igem.org/mediawiki/2018/4/41/T--Macquarie_Australia--Logo_transperant.png" style="width: 50%; margin-left: auto; margin-right: auto; display: block;">
 
</div>
 
 
<!-- COPY AND PASTE THESE 3 LINES FOR A NEW HEADING -->
 
 
<div style="width: 50%; margin-left: auto; margin-right: auto; display: block;">
 
    <h style= "font-size: 20px; font-weight: bold;">Abstract</h>
 
    <p style="text-align: justify">
 
 
<!-- ENTER TEXT FOR THE PAGE HERE -->
 
 
poteins need to be synthesised and purified for use in therapeutic and industrial applications.  At present, this process is costly, time-consuming and operationally difficult.  We aim to address these challenges through the formation of vesicles within a familiar and ubiquitous expression vector, Escherichia coli.  These vesicles allow for the sequestration of desired proteins and hence enable simplified, bulk purification via chromatography or centrifugation.  Similarly, enzymes and small molecules also present the opportunity to produce or process natural products and refine typically cytotoxic compounds.  To address these issues, the chlorophyll biosynthesis genes will be introduced into E. coli, and it is these genes that have been identified as the source of prolamellar bodies (PLB) in photosynthetic organisms.  The formation of vesicles within E. coli is novel research, never attempted in prokaryotes before and would act as a toolkit to address the multitude of issues mentioned above.
 
 
</p>
 
 
 
<br>
 
<br>
 
<div style="width: auto; margin-left: auto; margin-right: auto; display: block;">
 
    <h style= "font-size: 20px; font-weight: bold;">Hypothesis</h>
 
    <p style="text-align: justify">
 
 
 
Expression of the chlorophyll biosynthesis pathway in E. coli will lead to PLB formation, when grown in the dark.  When exposed to light, the PLB will dissociate and leave behind the lipid structure.
 
 
</p>
 
 
 
<br>
 
<br>
 +
<br>
 +
<br>
 +
<!-- ____________________________________________________________________________________________ -->
  
<div style="width: auto; margin-left: auto; margin-right: auto; display: block;">
+
        <!--INVISIBLE BOX, MAYBE USE TO HOST CONTENT? -->
    <h style= "font-size: 20px; font-weight: bold;">Approach</h>
+
        <div class="row" style="background-color: #f2f2f2;">
    <p style="text-align: justify">
+
            <div class="column side left" style="background-color: #f2f2f2;">
 +
            </div>
  
  
Previous research has demonstrated that E. coli produces protoporphyrin as a natural metabolite and we will be using this as a starting point for chlorophyll biosynthesis in E. coli.  To do this, we will be using the genes from the chlorophyll biosynthesis pathway in Chlamydomonas reinhardtii, a well studied alga used as a model in laboratories.  In support of this, we have carried out literature searches to identify the expression level necessary for each gene and optimised this through computer modelling.  Based on this research, several operons have been designed, each with the optimal expression levels necessary.  Once complete, each of these operons will be assembled into one plasmid designed around a standardised biobrick design.  This allows for vesicle formation to be introduced into any E. coli culture via a single transformation.
+
            <div class="column side right"style="background-color: #f2f2f2;">
  
<br>
+
            </div>
 +
        </div>
 +
        <!-- END OF BOX -->
  
These cells, when grown in the absence of light, cause protochlorophyllide (pchlide) to accumulate into semi-crystalline aggregates with phospholipids and key enzymes, forming PLBs, the foundation of our vesicles.  The cells are subsequently exposed to light, activating the POR (protochlorophyllide oxide reductase) enzyme, resulting in the production of chlorophyll 𝛼 from pchlide.  This conversion has been experimentally demonstrated to result in the spontaneous formation of phospholipid vesicles from the PLBs.  Thus, we will enable E. coli to produce vesicles, generating a tool that can be used in research and industry with profound implications.
 
  
</p>
 
  
<div class="row">
 
<div class="column side left">
 
</div>
 
 
<div class="column middle">
 
 
</div>
 
 
<div class="column side right">
 
 
</div>
 
</div>
 
  
   
 
   
 
   
 
   
 
  
   
 
  
  
 
     </body>
 
     </body>
 
</html>
 
</html>
 +
{{Macquarie_Australia/Footer}}

Latest revision as of 03:50, 18 October 2018


Abstract

Nanocompartment production within common prokaryotic expression vectors is highly desirable, and an active area of research. These compartments can be used for the sequestration of cellular products such as proteins and small molecules, aiding the recombinant production of pharmaceuticals and fine chemicals. Additionally, confining cytotoxic compounds extends the utility of recombinant production by ensuring the survival of cells. As well as this, bulk isolation of compartments potentially simplifies purification procedures, while confining enzymes and metabolic pathways within enclosed compartments also aids biosynthetic efficiency, by bringing enzymes and substrates closer in proximity. Additionally, nanocompartments have also been investigated for use in slow release or targeted drug delivery, as well as improving drug bioavailability. Similarly, biological nanocompartments have applications in materials production, cosmetics, and agriculture. Presented herein, we engineer synthetic vesicles into Escherichia coli based upon the known spontaneous vesicle formation in plants and algae associated with the chlorophyll biosynthesis pathway. By mimicking this natural process within E. coli, we extend the aforementioned benefits of biological nanocompartments to a ubiquitous expression vector, thereby enhancing industrial and academic molecular biology and biotechnology.



Our Approach

Ultimately, in order to produce vesicles within E. coli, we need to mimic chlorophyll biosynthesis. The metabolites and enzymes associated with this pathway spontaneously yield vesicles. It has long been known that E. coli produces protoporphyrin as a natural metabolite (Cox and Charles, 1973) and we will be using this as a starting point for chlorophyll biosynthesis in E. coli. To do this, we will be using the genes from the chlorophyll biosynthesis pathway in Chlamydomonas reinhardtii, a well studied alga used widely as a model organism. In support of this, we have carried out literature searches to identify the expression level necessary for each gene and optimised this through computer modelling. Based on this research, several operons have been designed, each with the optimal expression levels necessary. Once complete, each of these operons will be assembled into one plasmid designed around a standardised biobrick design. This allows for vesicle formation to be introduced into any E. coli culture via a single transformation.

These cells, when grown in the absence of light, cause protochlorophyllide (pchlide) to accumulate into semi-crystalline aggregates with phospholipids and key enzymes. These aggregates, termed prolamellar bodies, are the foundation of our vesicles. The cells are subsequently exposed to light, activating the POR (protochlorophyllide oxidoreductase) enzyme, resulting in the production of chlorophyll 𝛼 from pchlide (Bradbeer et al. 1974). This conversion has been experimentally demonstrated to result in the spontaneous formation of phospholipid vesicles from the prolamellar bodies. Thus, we will enable E. coli to produce vesicles, generating a tool that can be used in research and industry with profound implications.








References

Cox, R. and Charles, H.P., 1973. Porphyrin-accumulating mutants of Escherichia coli. Journal of bacteriology, 113(1), pp.122-132.

Bradbeer, J.W., Gyldenholm, A.O., Ireland, H.M.M., Smith, J.W., Rest, J. and Edge, H.J.W., 1974. Plastid development in primary leaves of Phaseolus vulgaris. New phytologist, 73(2), pp.271-279.