Difference between revisions of "Team:Macquarie Australia/Description"

 
(44 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
+
{{Macquarie_Australia/NavBar}}
  
 
<html>
 
<html>
Line 65: Line 65:
 
                 font-size: 13px;
 
                 font-size: 13px;
 
                 font-family: 'Quicksand', sans-serif;
 
                 font-family: 'Quicksand', sans-serif;
            }s
 
 
            .bio_paragraph{
 
                box-sizing: border-box;
 
                width: 100%;
 
                float: right;   
 
 
             }
 
             }
 +
        </style>
  
            .bio_page_grid{
 
                display: grid;
 
                grid-template-columns: 50% 50%;
 
                grid-template-rows: repeat(13, 50%);
 
            }
 
  
 +
    </head>
  
  
  
            /* For hte rotating image */
+
    <body>
            .Landing_image_container {
+
                width: 50%;
+
                display: flex;
+
                position: relative;
+
                margin: 0 auto;
+
                align-items: center;
+
                justify-content: center;
+
            }
+
  
            .Landing_image_container img {
+
<div style="width: 50%; margin-left: auto; margin-right: auto; display: block;">
                width: 100%;
+
<img src="https://static.igem.org/mediawiki/2018/8/8d/T--Macquarie_Australia--Description_Header.png" width="100%" height=auto>
            }
+
        </div>
 +
        <!-- ADD NEW CODE HERE-->
  
            .Landing_image_container img.overlap {
+
<!-- COPY AND PASTE everything between the lines for a new heading and block of content -->
                position: absolute;
+
<!-- ____________________________________________________________________________________________ -->
            }
+
  
        </style>
 
  
 +
<div style="width: 50%; margin-left: auto; margin-right: auto; display: block;">
 +
    <h style= "font-size: 25px; font-weight: bold;">
  
    </head>
 
  
 +
<!-- Heading goes here -->Abstract
  
 +
    </h>
 +
    <p style="text-align: justify; font-size: 14px; font-family: 'Quicksand', sans-serif;">
  
    <body>
 
  
 +
<!-- ENTER TEXT FOR THE PAGE HERE -->
 +
Nanocompartment production within common prokaryotic expression vectors is highly desirable, and an active area of research. These compartments can be used for the sequestration of cellular products such as proteins and small molecules, aiding the recombinant production of pharmaceuticals and fine chemicals. Additionally, confining cytotoxic compounds extends the utility of recombinant production by ensuring the survival of cells. As well as this, bulk isolation of compartments potentially simplifies purification procedures, while confining enzymes and metabolic pathways within enclosed compartments also aids biosynthetic efficiency, by bringing enzymes and substrates closer in proximity. Additionally, nanocompartments have also been investigated for use in slow release or targeted drug delivery, as well as improving drug bioavailability. Similarly, biological nanocompartments have applications in materials production, cosmetics, and agriculture. Presented herein, we engineer synthetic vesicles into <i>Escherichia coli</i> based upon the known spontaneous vesicle formation in plants and algae associated with the chlorophyll biosynthesis pathway. By mimicking this natural process within <i>E. coli</i>, we extend the aforementioned benefits of biological nanocompartments to a ubiquitous expression vector, thereby enhancing industrial and academic molecular biology and biotechnology.
  
        <nav class="navbar navbar-default navbar-fixed-top" style="padding-top: 20px;">
 
            <div class="container-fluid">
 
                <div class="navbar-header">
 
  
                    <a class="navbar-logo" href="https://2018.igem.org/Team:Macquarie_Australia">
 
                        <image class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/8a/T--Macquarie_Australia--Header_Circle.png" height="80" width="80" style = "position: absolute; left: 10px; top: 30px;">
 
                        </image>
 
                    </a>
 
  
                </div>
+
    </p>
                <div class="navbar-header" style="padding-top: 15px; padding-left: 100px;">
+
</div>
                    <a class="navbar-logo" href="https://2018.igem.org/Team:Macquarie_Australia">
+
<br>
                        <image class="img-responsive" src="https://static.igem.org/mediawiki/2018/2/25/T--Macquarie_Australia--Logo_onlyText.png" height="120" width="120">
+
<br>
                        </image>
+
<!-- ____________________________________________________________________________________________ -->
                    </a>
+
                </div>
+
  
                <div id="navbar" class="navbar-collapse collapse">
 
                    <ul class="nav navbar-nav navbar-right" style="margin-top: 15px;">
 
                        <li class="dropdown">
 
                            <a class="dropdown-toggle active" style = "font-family: 'Raleway', sans-serif;">Project<span class="caret"></span></a>
 
                            <ul class="dropdown-menu" style="left:0;">
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/Description">Description</a></li>
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/Design">Design</a></li>
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/Experiments">Experiments</a></li>
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/Results">Results</a></li>
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/ProjectSafety">Safety</a></li>
 
                            </ul>
 
                        </li>
 
  
  
                        <li class="dropdown">
 
                            <a class="dropdown-toggle active" style = "font-family: 'Raleway', sans-serif;" >Notebook<span class="caret"></span></a>
 
                            <ul class="dropdown-menu" style="left:0;">
 
                                <li><a style = "font-family: 'Raleway', sans-serif;"  href="https://2018.igem.org/Team:Macquarie_Australia/Notebook">Notebook</a></li>
 
                            </ul>
 
                        </li>
 
  
                        <li class="dropdown">
 
                            <a style = "font-family: 'Raleway', sans-serif;" class="dropdown-toggle active">Parts<span class="caret"></span></a>
 
                            <ul class="dropdown-menu" style="left:0;">
 
                                <li><a style = "font-family: 'Raleway', sans-serif;"  href="https://2018.igem.org/Team:Macquarie_Australia/Parts">Summary</a></li>
 
                                <li><a style = "font-family: 'Raleway', sans-serif;"  href="https://2018.igem.org/Team:Macquarie_Australia/CompositeParts">Composite parts</a></li>
 
                                <li><a style = "font-family: 'Raleway', sans-serif;"  href="https://2018.igem.org/Team:Macquarie_Australia/PartsValidation">Validation</a></li>
 
                                <li><a style = "font-family: 'Raleway', sans-serif;"  href="https://2018.igem.org/Team:Macquarie_Australia/ImprovedParts">Improved Parts</a></li>
 
  
                            </ul>
 
                        </li>
 
  
                        <li class="dropdown">
 
                            <a style = "font-family: 'Raleway', sans-serif;" class="dropdown-toggle active">Interlab<span class="caret"></span></a>
 
                            <ul class="dropdown-menu" style="left:0;">
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/Interlab">Interlab Overview</a></li>
 
                            </ul>
 
                        </li>
 
  
                        <li class="dropdown">
 
                            <a style = "font-family: 'Raleway', sans-serif;" class="dropdown-toggle active">Human Practices<span class="caret"></span></a>
 
                            <ul class="dropdown-menu">
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/Human_Practices">Overview</a></li>
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/Interviews">Interviews</a></li>
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/PublicEngagement">Public Engagement</a></li>
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/IntergratedHumanPractices">Intergrated Human Practices</a></li>
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/Toolkit">Toolkit</a></li>
 
                            </ul>
 
                        </li>
 
                        <li class="dropdown">
 
                            <a style = "font-family: 'Raleway', sans-serif;" class="dropdown-toggle active">Team<span class="caret"></span></a>
 
                            <ul class="dropdown-menu">
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/Team">Meet The Team</a></li>
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/Staff">Staff</a></li>
 
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/Attributions">Attributions</a></li>
 
                            </ul>
 
                        </li>
 
  
                        <li class="dropdown">
+
<!-- ____________________________________________________________________________________________ -->
                            <a style = "font-family: 'Raleway', sans-serif;" class="dropdown-toggle active">Modelling<span class="caret"></span></a>
+
                            <ul class="dropdown-menu">
+
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/Model">Our Model</a></li>
+
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/ModelExperimentation">Experimental Data</a></li>
+
                            </ul>
+
                        </li>
+
  
                        <li class="dropdown">
+
<div style="width: 50%; margin-left: auto; margin-right: auto; display: block;">
                            <a style = "font-family: 'Raleway', sans-serif;" class="dropdown-toggle active">Collaboration<span class="caret"></span></a>
+
    <h style= "font-size: 25px; font-weight: bold;">
                            <ul class="dropdown-menu">
+
                                <li><a style = "font-family: 'Raleway', sans-serif;" href="https://2018.igem.org/Team:Macquarie_Australia/Collaboration">Overview</a></li>
+
                            </ul>
+
                        </li>
+
  
  
 +
<!-- Heading goes here -->Our Approach
  
                    </ul>
+
    </h>
                </div>
+
    <p style="text-align: justify; font-size: 14px; font-family: 'Quicksand', sans-serif;">
                <!-- /.navbar-collapse -->
+
            </div>
+
            <!-- /.container-fluid -->
+
        </nav>
+
  
  
        <!-- NEW CODE -->
+
<!-- ENTER TEXT FOR THE PAGE HERE -->
<div>
+
Ultimately, in order to produce vesicles within <i>E. coli</i>, we need to mimic chlorophyll biosynthesis. The metabolites and enzymes associated with this pathway spontaneously yield vesicles. It has long been known that <i>E. coli</i> produces protoporphyrin as a natural metabolite (Cox and Charles, 1973) and we will be using this as a starting point for chlorophyll biosynthesis in <i>E. coli</i>.  To do this, we will be using the genes from the chlorophyll biosynthesis pathway in <i>Chlamydomonas reinhardtii</i>, a well studied alga used widely as a model organism.  In support of this, we have carried out literature searches to identify the expression level necessary for each gene and optimised this through computer modelling.  Based on this research, several operons have been designed, each with the optimal expression levels necessary.  Once complete, each of these operons will be assembled into one plasmid designed around a standardised biobrick design.  This allows for vesicle formation to be introduced into any <i>E. coli</i> culture via a single transformation.
  
</div>
+
<br>
 +
<br>
  
<div>
+
These cells, when grown in the absence of light, cause protochlorophyllide (pchlide) to accumulate into semi-crystalline aggregates with phospholipids and key enzymes. These aggregates, termed prolamellar bodies, are the foundation of our vesicles.  The cells are subsequently exposed to light, activating the <b>POR</b> (protochlorophyllide oxidoreductase) enzyme, resulting in the production of chlorophyll 𝛼 from pchlide (Bradbeer et al. 1974). This conversion has been experimentally demonstrated to result in the spontaneous formation of phospholipid vesicles from the prolamellar bodies. Thus, we will enable <i>E. coli</i> to produce vesicles, generating a tool that can be used in research and industry with profound implications.
<img src = "https://static.igem.org/mediawiki/2018/4/41/T--Macquarie_Australia--Logo_transperant.png" style="width: 50%; margin-left: auto; margin-right: auto; display: block;">
+
</div>
+
  
<!-- COPY AND PASTE THESE 3 LINES FOR A NEW HEADING -->
 
  
<div style="width: 50%; margin-left: auto; margin-right: auto; display: block;">
 
    <h style= "font-size: 20px; font-weight: bold;">Abstract</h>
 
    <p style="text-align: justify">
 
  
<!-- ENTER TEXT FOR THE PAGE HERE -->
+
    </p>
 +
<img src="https://static.igem.org/mediawiki/2018/b/b4/T--Macquarie_Australia--general_project_graphic2.png" width="100%" height=auto>
 +
</div>
 +
<br>
 +
<br>
 +
<br>
 +
<br>
 +
<br>
 +
<!-- ____________________________________________________________________________________________ -->
  
poteins need to be synthesised and purified for use in therapeutic and industrial applications. At present, this process is costly, time-consuming and operationally difficult. We aim to address these challenges through the formation of vesicles within a familiar and ubiquitous expression vector, Escherichia coli. These vesicles allow for the sequestration of desired proteins and hence enable simplified, bulk purification via chromatography or centrifugation. Similarly, enzymes and small molecules also present the opportunity to produce or process natural products and refine typically cytotoxic compounds. To address these issues, the chlorophyll biosynthesis genes will be introduced into E. coli, and it is these genes that have been identified as the source of prolamellar bodies (PLB) in photosynthetic organisms. The formation of vesicles within E. coli is novel research, never attempted in prokaryotes before and would act as a toolkit to address the multitude of issues mentioned above.  
+
<center>
 
+
<a href="https://2018.igem.org/Team:Macquarie_Australia/Chlorofella">
</p>
+
<img src="https://static.igem.org/mediawiki/2018/9/9d/T--Macquarie_Australia--chlorofella_logo.png"
 +
    onmouseover="this.src='https://static.igem.org/mediawiki/2018/e/ea/T--Macquarie_Australia--chlorofella_dark.png';"
 +
    onmouseout="this.src='https://static.igem.org/mediawiki/2018/9/9d/T--Macquarie_Australia--chlorofella_logo.png';"
 +
    width="150px" height=auto>
 +
</a>
 +
</center>
  
 +
<br>
 
<br>
 
<br>
  
<div style="width: auto; margin-left: auto; margin-right: auto; display: block;">
+
<!-- ____________________________________________________________________________________________ -->
    <h style= "font-size: 20px; font-weight: bold;">Hypothesis</h>
+
    <p style="text-align: justify">
+
  
 +
<div style="width: 50%; margin-left: auto; margin-right: auto; display: block;">
 +
    <h style= "font-size: 25px; font-weight: bold;">
  
Expression of the chlorophyll biosynthesis pathway in E. coli will lead to PLB formation, when grown in the dark.  When exposed to light, the PLB will dissociate and leave behind the lipid structure.
 
  
</p>
+
<!-- Heading goes here -->References
  
 +
    </h>
 +
    <p style="text-align: justify; font-size: 14px; font-family: 'Quicksand', sans-serif;">
 +
 +
 +
<!-- ENTER TEXT FOR THE PAGE HERE -->
 +
Cox, R. and Charles, H.P., 1973. Porphyrin-accumulating mutants of <i>Escherichia coli</i>. <i>Journal of bacteriology</i>, 113(1), pp.122-132.
 +
<br>
 
<br>
 
<br>
 +
Bradbeer, J.W., Gyldenholm, A.O., Ireland, H.M.M., Smith, J.W., Rest, J. and Edge, H.J.W., 1974. Plastid development in primary leaves of Phaseolus vulgaris. <i>New phytologist</i>, 73(2), pp.271-279.
  
<div style="width: auto; margin-left: auto; margin-right: auto; display: block;">
 
    <h style= "font-size: 20px; font-weight: bold;">Approach</h>
 
    <p style="text-align: justify">
 
  
  
Previous research has demonstrated that E. coli produces protoporphyrin as a natural metabolite and we will be using this as a starting point for chlorophyll biosynthesis in E. coli.  To do this, we will be using the genes from the chlorophyll biosynthesis pathway in Chlamydomonas reinhardtii, a well studied alga used as a model in laboratories.  In support of this, we have carried out literature searches to identify the expression level necessary for each gene and optimised this through computer modelling.  Based on this research, several operons have been designed, each with the optimal expression levels necessary.  Once complete, each of these operons will be assembled into one plasmid designed around a standardised biobrick design.  This allows for vesicle formation to be introduced into any E. coli culture via a single transformation.
+
    </p>
 
+
</div>
 +
<br>
 
<br>
 
<br>
 +
<br>
 +
<br>
 +
<!-- ____________________________________________________________________________________________ -->
  
These cells, when grown in the absence of light, cause protochlorophyllide (pchlide) to accumulate into semi-crystalline aggregates with phospholipids and key enzymes, forming PLBs, the foundation of our vesicles.  The cells are subsequently exposed to light, activating the POR (protochlorophyllide oxide reductase) enzyme, resulting in the production of chlorophyll 𝛼 from pchlide.  This conversion has been experimentally demonstrated to result in the spontaneous formation of phospholipid vesicles from the PLBs.  Thus, we will enable E. coli to produce vesicles, generating a tool that can be used in research and industry with profound implications.
 
 
</p>
 
</div>
 
</div>
 
</div>
 
</div>
 
 
         <!--INVISIBLE BOX, MAYBE USE TO HOST CONTENT? -->
 
         <!--INVISIBLE BOX, MAYBE USE TO HOST CONTENT? -->
 
         <div class="row" style="background-color: #f2f2f2;">
 
         <div class="row" style="background-color: #f2f2f2;">
Line 265: Line 189:
 
             </div>
 
             </div>
  
            <div class="column middle"style="background-color: #f2f2f2;">
 
 
            </div>
 
  
 
             <div class="column side right"style="background-color: #f2f2f2;">
 
             <div class="column side right"style="background-color: #f2f2f2;">
Line 274: Line 195:
 
         </div>
 
         </div>
 
         <!-- END OF BOX -->
 
         <!-- END OF BOX -->
 
 
        <!-- FOOTER CODE DO NOT TOUCH -->
 
        <div class="footerContainer">
 
            <div class="footerItemSponsor"  >
 
                <img style = "height: auto; width: 70%; float: left;" src="https://static.igem.org/mediawiki/2018/d/de/T--Macquarie_Australia--Footer_Sponsor.png">
 
            </div>
 
            <div class="footerItem" >
 
                <img style = "width: 4%; float: left;padding-top: 5%;padding-right: 2%; padding-left: 5%;" src="https://static.igem.org/mediawiki/2018/d/d3/T--Macquarie_Australia--Footer_Email.png">
 
            </div>
 
            <div class="footerItem" >
 
                <img style = "width: 4%;float: left; padding-top: 5%;padding-right: 2%; " src="https://static.igem.org/mediawiki/2018/1/1a/T--Macquarie_Australia--Footer_Facebook.png">
 
            </div>
 
            <div class="footerItem" >
 
                <img style = "width: 4%;float: left;padding-top: 5%;padding-right: 2%;" src="https://static.igem.org/mediawiki/2018/1/11/T--Macquarie_Australia--Footer_Instagram.png">
 
            </div>
 
            <div class="footerItem">
 
                <img style = "width: 4%;float: left; padding-top: 5.5%; padding-right: 2%;" src="https://static.igem.org/mediawiki/2018/4/4c/T--Macquarie_Australia--Footer_Twitter.png">
 
            </div>
 
        </div>
 
        <!--END OF FOOTER CODE -->
 
  
  
Line 304: Line 204:
 
     </body>
 
     </body>
 
</html>
 
</html>
 +
{{Macquarie_Australia/Footer}}

Latest revision as of 03:50, 18 October 2018


Abstract

Nanocompartment production within common prokaryotic expression vectors is highly desirable, and an active area of research. These compartments can be used for the sequestration of cellular products such as proteins and small molecules, aiding the recombinant production of pharmaceuticals and fine chemicals. Additionally, confining cytotoxic compounds extends the utility of recombinant production by ensuring the survival of cells. As well as this, bulk isolation of compartments potentially simplifies purification procedures, while confining enzymes and metabolic pathways within enclosed compartments also aids biosynthetic efficiency, by bringing enzymes and substrates closer in proximity. Additionally, nanocompartments have also been investigated for use in slow release or targeted drug delivery, as well as improving drug bioavailability. Similarly, biological nanocompartments have applications in materials production, cosmetics, and agriculture. Presented herein, we engineer synthetic vesicles into Escherichia coli based upon the known spontaneous vesicle formation in plants and algae associated with the chlorophyll biosynthesis pathway. By mimicking this natural process within E. coli, we extend the aforementioned benefits of biological nanocompartments to a ubiquitous expression vector, thereby enhancing industrial and academic molecular biology and biotechnology.



Our Approach

Ultimately, in order to produce vesicles within E. coli, we need to mimic chlorophyll biosynthesis. The metabolites and enzymes associated with this pathway spontaneously yield vesicles. It has long been known that E. coli produces protoporphyrin as a natural metabolite (Cox and Charles, 1973) and we will be using this as a starting point for chlorophyll biosynthesis in E. coli. To do this, we will be using the genes from the chlorophyll biosynthesis pathway in Chlamydomonas reinhardtii, a well studied alga used widely as a model organism. In support of this, we have carried out literature searches to identify the expression level necessary for each gene and optimised this through computer modelling. Based on this research, several operons have been designed, each with the optimal expression levels necessary. Once complete, each of these operons will be assembled into one plasmid designed around a standardised biobrick design. This allows for vesicle formation to be introduced into any E. coli culture via a single transformation.

These cells, when grown in the absence of light, cause protochlorophyllide (pchlide) to accumulate into semi-crystalline aggregates with phospholipids and key enzymes. These aggregates, termed prolamellar bodies, are the foundation of our vesicles. The cells are subsequently exposed to light, activating the POR (protochlorophyllide oxidoreductase) enzyme, resulting in the production of chlorophyll 𝛼 from pchlide (Bradbeer et al. 1974). This conversion has been experimentally demonstrated to result in the spontaneous formation of phospholipid vesicles from the prolamellar bodies. Thus, we will enable E. coli to produce vesicles, generating a tool that can be used in research and industry with profound implications.








References

Cox, R. and Charles, H.P., 1973. Porphyrin-accumulating mutants of Escherichia coli. Journal of bacteriology, 113(1), pp.122-132.

Bradbeer, J.W., Gyldenholm, A.O., Ireland, H.M.M., Smith, J.W., Rest, J. and Edge, H.J.W., 1974. Plastid development in primary leaves of Phaseolus vulgaris. New phytologist, 73(2), pp.271-279.