Difference between revisions of "Team:NCKU Tainan/Measurement"

 
(87 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
{{NCKU_Tainan/header}} {{NCKU_Tainan/navbar}} {{NCKU_Tainan/style}}
 
{{NCKU_Tainan/header}} {{NCKU_Tainan/navbar}} {{NCKU_Tainan/style}}
 
<html>
 
<html>
    <head>
 
        <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/applied_design?action=raw&ctype=text/css">
 
    </head>
 
    <body data-spy="scroll" data-target=".navbar-example">
 
        <div class="container content">
 
        <h1 class="head">Entrepreneurship</h1>
 
            <div class="navbar-example">
 
                <div class="row">
 
                    <div class="col-2 side">     
 
                        <div id="sidelist" class="list-group">
 
                            <a class="list-group-item list-group-item-action" href="#Product_Design">Product Design</a>
 
                            <a class="list-group-item list-group-item-action" href="#Entrepreneurship">Entrepreneurship</a>
 
                            <a class="list-group-item list-group-item-action" href="#Business_Model">Business Model</a>
 
                            <a class="list-group-item list-group-item-action" href="#Cost_Evaluation">Cost Evaluation</a>
 
                            <a class="list-group-item list-group-item-action" href="#Reference">Reference</a>
 
                            <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x" aria-hidden="true"></i></a>
 
                        </div>
 
                    </div>
 
                    <div class="col-10">
 
                        <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
 
                            <div class="container">
 
                                <div id="Product_Design">
 
                                    <h3>Product Design</h3>
 
                                    <img class="bigimg" src="https://static.igem.org/mediawiki/2018/2/26/T--NCKU_Tainan--applied_design_product.gif" alt="product design">
 
                                    <p class="pcenter"> Fig.1 Flow chart of E. coli carbon utilization system </p>                                   
 
                                      <ol>
 
                                        <li class="licontent">Overview</li>
 
                                        <p class="pcontent">In this project, we, the NCKU Tainan Team, have proposed an alternative way to reduce the emission of Carbon dioxide (CO<sub>2</sub>). Referring to the opinions and feedbacks from many industry experts and professors, we design a new factory flow to capture CO<sub>2</sub> by <i>E. coli</i> Not only our device meets the specs to commercialize, but it also demonstrates high cost performance.
 
                                        </p>
 
                                        <p class="pcontent">The emission of CO<sub>2</sub> has been a serious problem for a century that causes global warming and severe climate change. Even though many ways have been tried to reduce it, the generation of CO<sub>2</sub> primarily from industry is still overwhelming. Therefore, scientists and governments have been working hard to find solutions to tackle the problem.
 
                                        </p>
 
                                        <li class="licontent">Control System</li>
 
                                        <div class="centerimg">
 
                                            <img class="smallimg" src="https://static.igem.org/mediawiki/2018/6/68/T--NCKU_Tainan--applied_design_overview.png" alt="overview">
 
                                        </div>
 
                                        <p class="pcenter">Fig. 2 Overview of the control system </p>                                 
 
                                        <p class="pcontent">There are many aspects we need to consider. First, we calculate the emission velocity of CO<sub>2</sub> from the factory, as well as the medium exchange rate and the growth rate of our <i>E. coli</i>.  </p>
 
                                        <p class="pcontent">
 
Fig. 1 is a process of whole <i>E. coli</i> carbon utilization that we design for industrial application. We simplify it into three parts which shows in Fig. 2 to explain more clearly. Three switches control three parts, named A, B and C. Basically, the factory replaces the medium twice a day. At one hour before replacing the medium, the user needs to turn on switch C to discharge ninety percent of the medium. When it is time to replace the medium, switch C will be turned off and switch B will be turned on to refill medium. When sufficient medium is added, switch B will be turned off and switch A will be turned on to let CO<sub>2</sub> in. Just like the animation showed on Fig. 1.
 
                                        </p>
 
                                        <p class="pcontent">Considering the cost, the growth time of our <i>E. coli</i> and the floor area, we optimized replace time of the medium, replace it every twelve hours and with 72 parallel bioreactors.
 
Next, we are going to have more detail description on three parts, which are <a class="link" href="#gas_and_flow_system">Gas preparation system and flow system</a>,
 
                                            <a class="link" href="#medium_preparation">Medium preparation</a>,
 
                                            and <a class="link" href="#downstream">Downstream products purification and biosafety</a>.
 
                                        </p>
 
                                     
 
                                        <h5 class="boldh5" id="gas_and_flow_system">A. Gas preparation system and flow system</h5>
 
                                        <div class="centerimg">
 
                                            <img class="smallimg" src="https://static.igem.org/mediawiki/2018/4/46/T--NCKU_Tainan--applied_design_gasflow.png" alt="gasflow">
 
                                        </div>
 
                                        <p class="pcenter"> Fig. 3 Diagram of gas preparation system and flow system </p>
 
                                        <p class="pcontent">According to IGCC (Integrate Gasification Combined Cycle) flow diagram, the fuel is first converted to syngas which is a mixture of H<sub>2</sub> and CO. The syngas is then burned in a combined cycle consisting of a gas turbine and a steam turbine with a heat recovery steam generator (HRSG). After CO<sub>2</sub> / H<sub>2</sub> separation, IGCC can reach the demand of CO<sub>2</sub> purity including low SOx and NOx emission fraction of allowable limits of bacteria. Finally, the produced flue gas could enter the pipeline leading to the bioreactor.  </p>
 
                                        <p class="pcontent">
 
In <i>E. coli </i>utilization system, the air is pumped in to neutralize the concentration of CO<sub>2</sub>. A controlled valve is used to control flow rate and split distribution. When the switch a is turned on, the switch b will be turned off, and vice versa. As for the CO<sub>2</sub> inlet and outlet, it will maintain an open system of bioreactor. In other words, CO<sub>2</sub> will enter continuously and cause some non-reacted CO<sub>2</sub> emitted.
 
                                        </p>
 
                                        <div class="centerimg">
 
                                            <img class="smallimg" src="https://static.igem.org/mediawiki/2018/b/b8/T--NCKU_Tainan--IGCC.png" alt="medium">
 
                                        </div>
 
                                        <p class="pcenter"> Fig. 4 IGCC process flow diagram. Source: Vattenfall. (2010)
 
Syngas has been treated by sulfur and nitrogen removal, as well as heavy metal removal and cooling tank. Through IGCC process, purified CO<sub>2</sub> in flue gas is allowable for <i>E. coli</i> CO<sub>2</sub> utilizing. </p>
 
  
 +
<head>
 +
    <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/measurement?action=raw&ctype=text/css">
 +
</head>
  
                                        <h5 class="boldh5" id="medium_preparation">B. Medium preparation</h5>
+
<body data-spy="scroll" data-target=".navbar-example">
                                        <div class="centerimg">
+
    <div class="container content">
                                            <img class="smallimg" src="https://static.igem.org/mediawiki/2018/f/f4/T--NCKU_Tainan--applied_design_medium.png" alt="medium">
+
        <div class="headstyle">
                                        </div>
+
            <h1 class="head">Measurement</h1>
                                        <p class="pcenter"> Fig. 5 Diagram of medium preparation</p>
+
        </div>
                                        <p class="pcontent">At this stage, we have two sections to consider, medium storage and medium preparation before replacing time.</p>
+
        <div class="righttitle">
                                        <p class="pcontent">
+
            <h6 class="subtitle">A Novel Approach to Measure</h6>
The medium is composed of M9 salt and xylose. For storage, we will convert it into powder with the required proportion. At one hour before replacing time, pour the powder into the medium tank and turn on the water injection switch. Turn on the stirrer of medium tank to have medium powder and water perfect mixing. The outlet of bioreactor (switch c) will be turned on at the same time, letting ninety percent of the medium in the bioreactor flow out . When the medium have prepared well, turn on the switch a and switch b for replacing medium in bioreactor, while the switch c will be turned off.
+
        </div>
                                        </p>
+
        <div class="navbar-example">
                                        <p class="pcontent">We also consider the process of raw materials, especially xylose, which is the key source of our pathway. Since xylose is one of the products of agricultural waste degradation, we visited the  <a class="link" href="#gas_and_flow_system">2018 Tainan Biotechnology and Green Energy Expo </a> to consulted with researchers from National Energy Program-Phase II, whose projects was biofuel and biodegradable plastic production via agricultural waste.  They had developed technique that degrade cellulose and semi-cellulose by ion solution.
+
            <div class="row">
                                        </p>
+
                <div class="col-2 side">
                                        <p class="pcontent">
+
                    <div id="sidelist" class="list-group">
Besides, we have opportunity to <a class="link" href="https://2018.igem.org/Team:NCKU_Tainan/Collaborations#UESTC-China">collaborate</a> with <a class="link" href="https://2018.igem.org/Team:UESTC-China">UESTC-Chian team </a>. They work for degrading straw with synthetic biology and convert the product into bio-fuel. One of the product from straw degradation is xylose. These techniques are eco-friendly and low-energy-require. Therefore, the process development of xylose production will be a low-carbon-emission process.      </p>  
+
                        <a class="list-group-item list-group-item-action" href="#achievement">Achievement</a>
                                        <h5 class="boldh5" id="downstream">C. Downstream products purification and biosafety</h5>
+
                        <a class="list-group-item list-group-item-action" href="#XUI">XUI</a>
                                        <div class="centerimg">
+
                        <a class="list-group-item list-group-item-action" href="#Carbon_Fixation">Carbon Fixation
                                            <img class="smallimg" src="https://static.igem.org/mediawiki/2018/7/7e/T--NCKU_Tainan--applied_design_downstream.png" alt="downstream">
+
                            Estimation</a>
                                        </div>
+
                        <a class="list-group-item list-group-item-action" href="#Reference">References</a>
                                        <p class="pcenter"> Fig. 6 Diagram of downstream process</p>
+
                        <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x"
                                         <p class="pcontent">We will discharge 90% of the used medium in the bioreactor one hour before new medium flows in. Which means that we let 10% of the reacted bacteria remain in the bioreactor to maintain a steady cell density condition of in the bioreactor. The effluent medium will be sterilized and filtered in the downstream clean-up tank. At this step, we harvest the bacteria by centrifuging and extracting the by-product such as amino acids, proteins, medicine or bio-fuel. Different extracting process designed depends on different by-product.</p>
+
                                aria-hidden="true"></i></a>
<p class="pcontent">
+
                    </div>
Besides, we try to reuse the waste heat of factories for sterilizing. The waste water can be recycled as well. Through Removing toxins and adjusting pH value
+
                </div>
 
+
                <div class="col-10">
the effluent could return to the medium tank. As for energy require for this system, renewable energy helps us to reach near -zero carbon emission process.
+
                    <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
                                         </p>
+
                        <div class="container">
 +
                            <div id="achievement">
 +
                                <h3>Achievement</h3>
 +
                                <div class="achievementborder">
 +
                                    <ol>
 +
                                         <br>
 +
                                        <li class="bigli">Develop a new measurement approach to determine the carbon
 +
                                            fixation ability of each strain </li>
 +
                                        <br>
 +
                                        <li class="bigli">Estimate the carbon fixation amount with our experiment
 +
                                            result </li>
 +
                                         <br>
 
                                     </ol>
 
                                     </ol>
 
                                 </div>
 
                                 </div>
                                <div id="Entrepreneurship">
+
                            </div>
                                    <h3>Entrepreneurship : China Steel</h3>
+
                            <div id="XUI">
                                     <img class="bigimg" src="https://static.igem.org/mediawiki/2018/a/a9/T--NCKU_Tainan--applied_design_chinasteel1.png" alt="china_steel">
+
                                <h3>The Xylose Utilization Index (XUI)</h3>
                                     <p class="pcenter">Fig.7 Picture of CSC interview</p>
+
                                <p class="pcontent">In the total solution experiment,
                                    <p class="pcontent">Meeting with experts and stakeholders is important in shaping our project to fulfill the needs of our target user.  
+
                                     we strive to measure the carbon fixation amount of each sample.
                                     China Steel Corporation is the largest integrated steel Manufacturer in Taiwan. Also, they had been adopting the algal bio-sequestration by  
+
                                    After reading numerous publications,
                                     cooperating with the research group at our university. Click here to know more in Entrepreneurship:Process, Suggestion and question and  
+
                                    we found out that previous researches determine the efficiency of carbon fixation
                                     Interview record.
+
                                    via measuring the decrease of carbon dioxide concentration in the closed system or
 +
                                    measure
 +
                                    the weight percentage of <sup>14</sup>C radioisotope in the dry cell.
 +
                                    However, due to biosafety constrain of our lab, we can barely use the radioisotope.
 +
                                    Measuring the decrease of carbon dioxide concentration in the closed system is also
 +
                                    impractical for us since we have too much test samples.
 +
                                    A new method to measure multiple samples in the short period of time is developed
 +
                                    by our team.
 +
                                    We are able to evaluate the fixation efficiency of each sample with optical density
 +
                                    O.D. 600 and
 +
                                    xylose consumption. We have measure various construction to prove that the enzyme
 +
                                    of our construction
 +
                                    is necessary for carbon fixation.
 +
                                </p>
 +
                                <p class="pcontent">The test samples below were incubated in a modified M9 medium which
 +
                                    substitutes xylose for glucose.
 +
                                    1/1000 of Luria-Bertani (LB) medium was added to support trace elements.
 +
                                    Since the concentration of LB medium is too low, it doesn’t contribute to the
 +
                                    carbon source of the bacteria.
 +
                                </p>
 +
                                <p class="pcontent">We defined a new index, Xylose Utilization Index (XUI),
 +
                                    to describe the potential of carbon fixation.
 +
                                    We can compare this index of each strain to find out the strain that has highest
 +
                                    capacity of carbon fixation.
 +
                                </p>
 +
                                <p class="pcontent">To define the XUI, we firstly made two assumptions: </p>
 +
                                <ol>
 +
                                    <li class="licontent">O.D. 600 of the sample has linear relationship to dry cell
 +
                                        weight (biomass).
 +
                                        Optical density is frequently used as a means of describing the cell density in
 +
                                        the broth.
 +
                                        We measured the dry cell weight of samples in different O.D. value and
 +
                                        discovered that it has linear relationship.
 +
                                        We conclude that we can utilize O.D. value to estimate the dry cell weight.
 +
                                        1 O.D. of BL21 (DE3) strain per litre yields the dry cell weight of 0.8 gram.
 +
                                    </li>
 +
                                    <div class="centerimg">
 +
                                        <img class="smallimg" src="https://static.igem.org/mediawiki/2018/f/f2/T--NCKU_Tainan--Results_Fig_9.PNG">
 +
                                        <p class="pcenter">Fig 1. shows the dry cell weight of BL21 (DE3) incubated in
 +
                                            modified M9 xylose medium. A linear relationship between O.D. and dry cell
 +
                                            weight is observed.</p>
 +
                                     </div>
 +
                                    <li class="licontent">The elemental formula of <i>E. coli</i> should be fixed or
 +
                                        varies within a small range.
 +
                                        Although the formula may have variations in different growth condition,
 +
                                        we assume that such error can be ignore during the following calculation.
 +
                                    </li>
 +
                                </ol>
 +
                                <p class="pcontent">Combining these two assumptions, we can conclude that in a fixed
 +
                                    O.D. 600 value,
 +
                                    the composite weight of carbon is also fixed.
 +
                                    Thus, O.D. 600 can be considered equivalent to carbon weight of the bacteria.
 +
                                </p>
 +
                                <p class="pcontent">After these two assumptions,
 +
                                    the XUI is designed to evaluate the carbon fixation ability of each strain.
 +
                                     The definition of the index is xylose consumption over O.D. 600.
 +
                                    O.D. 600 measurement can be viewed as the weight of carbon of the bacteria.
 +
                                    The index shows the ratio of xylose consumption per biomass.
 +
                                    For wild type <i>E. coli</i>, it only consumes xylose (the sole carbon source
 +
                                    provided by the medium)
 +
                                     as its carbon source. Although some native <i>E. coli</i> pathway may utilize CO<sub>2</sub>
 +
                                    (such as lipid synthesis), the amount is too small to be considered.
 +
                                    As for engineered strain, carbon dioxide can be utilized as its carbon source.
 +
                                    By producing same amount of carbon biomass, it requires less xylose.
 +
                                    We can thus compare the XUI of each strain to determine the strain that fix carbon.
 +
                                    The less the XUI in the sample, the more possibility that it fix carbon.
 +
                                </p>
 +
                                <p class="pcontent">$${XUI = {{xylose \ consumption \ (g/l)} \over {O.D. 600}}}$$</p>
 +
                                <img class="gif" src="">
 +
                                <p class="pcontent">We use the XUI to compare the carbon fixation efficiency of
 +
                                    each strain and prove the function of each system.
 +
                                     For the experiment result, please view the Result(hyperlink) page.
 +
                                </p>
 +
                            </div>
  
                                    </p>
+
                            <div id="Carbon_Fixation">
                                    <h5 class="boldh5">Process</h5>
+
                                <h3>Carbon Fixation amount estimation</h3>
                                    <p class="pcontent">We were given the opportunity to meet with the senior executive of China Steel Corporation
+
                                <p class="pcontent">To find out how much and how efficient genetically engineered <i>E.
                                        to gain invaluable insight for our research. The meeting commenced with our presentation.
+
                                         coli</i> can fix
                                        During the presentation, we introduced our project, including the bioreactor design and the industrial model.
+
                                     carbon dioxide, we use the material balance concept to evaluate the heterotrophic
                                        By listing out all the aspects we had considered, we would like to obtain advice
+
                                     CO<sub>2</sub> fixation process.
                                        on the practical and social considerations involved in the application of our project in industry.
+
                                    Consider a system composed of a single component, the general material balance can
                                    </p>
+
                                    be written as:
                                 
+
                                    $${\{Input\ to\ the\ system\}\ –\ \{Output\ to\ the\ system\}\ =\
                                    <h5 class="boldh5">Suggestion and Question</h5>
+
                                    \{Accumulation\ in\ the\ system\}}$$
                                    <p class="pcontent">Will the high concentration of CO<sub>2</sub> retard growth of engineered bacteria?</p>
+
                                    <p class="pcontent">Microalgae is reported resistant to SOx and NOx. Does <i>E. coli</i> survive under such conditions?</p>
+
                                    <p class="pcontent">The best condition for engineered <i>E. coli</i> to capture CO<sub>2</sub> is a lower CO<sub>2</sub>
+
                                         concentration without too much SOx and NOx particles.
+
                                        However, we won’t be able to provide an ideal culture condition in Industrial application.
+
                                        After testing the tolerance of <i>E. coli</i>, we conclude that <i>E. coli</i> is possible to survive under that
+
                                        kind of condition in factory and the only effects its expression.
+
                                        It may not capture as much CO<sub>2</sub> as culture in the lab.
+
                                     </p>
+
                                    <p class="pcontent">It is important to define a specific commercial product that can be truly produced
+
                                        since your user may consider its economic viability.
+
                                        They stated that a product that can be widely used is better.
+
                                        At the same time, we should consider current GMO legislation if we want to commercialize those products.
+
                                        The actual condition is not as ideal as in the laboratory,
+
                                        we should optimize the condition to maximize the carbon fixation ability of the microbes.
+
                                     </p>
+
                                    <h5 class="boldh5">Interview record</h5>
+
                                    <p class="pcontent"> The record can be separated into two parts.
+
                                        One is about their feedback after interview, another one is our customer investigate questions.
+
                                        We use CSC represent China Steel.
+
                                    </p>
+
                                    <div class="row">
+
                                        <a class="btn col-md-12" data-toggle="collapse" href="#complete_interview" role="button" aria-expanded="false" aria-controls="multiCollapseExample1">
+
                                            Click to see complete interview
+
                                            <i class="fa fa-arrow-down fa-10" aria-hidden="true"></i>
+
                                        </a>
+
                                    </div>   
+
                                    <div class="collapse multi-collapse" id="complete_interview">
+
                                        <div class="card card-body">
+
                                            <h5 class=boldh5>Part1. Interview record</h5>
+
                                            <p class="pcontent">Date:September. 15, 9 am.</p>
+
                                            <p class="pcontent">Location:China Steel meeting room</p>
+
                                            <br>
+
                                            <p class="pcontent">CSC: What is the adaptability of <i>E. coli</i> for the corporate?
+
                                                Do you have any doubt about the actual application?
+
                                            </p>
+
                                            <p class="pcontent">It can be explained from the following points:</p>
+
                                            <ol>
+
                                                <li class="licontent">Concentration:</li>
+
                                                <p class="pcontent">Bacteria can tolerate the increase of CO<sub>2</sub> concentration.  
+
                                                    However, there is limit in the input, and our team is targeting this system.
+
                                                </p>
+
                                                <p class="pcontent">A shunt is designed to slow down the rate of input to enter the bacteria rapidly.</p>
+
                                                <li class="licontent">Temperature:</li>
+
                                                <p class="pcontent">In this system, 42 degrees Celsius is our limit,
+
                                                    and we need to overcome by technology in the high temperature.
+
                                                </p>
+
                                                <p class="pcontent">The problem is that our team will lower the temperature through other devices.</p>
+
                                                <li class="licontent">Waste:</li>
+
                                                <p class="pcontent">Our team solves the problem of waste by recycling and filtering out.</p>
+
                                            </ol>
+
                                            <p class="pcontent">CSC :From the perspective of the company,
+
                                                how much additional benefit can it bring to the output value of the products in their downstream of system?
+
                                            </p>
+
                                            <p class="pcontent">At present, the product of downstream in our system is glutamine,
+
                                                why we choose is because glutamine is accessible and easy to operate for us.
+
                                                Its additional benefit refers to the different application.
+
                                                Take the market value of glutamine as example, the additional benefit can reach 10 times larger of the <i>E. coli</i> culture cost,
+
                                                ignoring the fixed cost of the whole system.
+
                                            </p>
+
                                            <p class="pcontent">Besides, <i>E. coli</i> was regarded as high potential species to produce all kinds of protein.
+
                                                Including essential amino acid that cannot be synthesized by organism, or forage for stock farmer.
+
                                                Therefore, our system has high potential output value to bring great additional benefit.
+
                                            </p>
+
                                            <p class="pcontent">CSC:China Steel is the second largest carbon consumer in our country.
+
                                                It needs two-thirds of Taiwan's area to balance one-tenth of the current emissions.
+
                                                In practice, it is still too far away.
+
                                                Is it possible to match the materials with 3D layout?
+
                                            </p>
+
                                            <p class="pcontent">We want to save the space and culture in high density concentration:</p>
+
                                            <ol>
+
                                                <li class="licontent">Reduce the volume of culture material</li>
+
                                                <li class="licontent">Stacking the bioreactors</li>
+
                                            </ol>
+
                                            <p class="pcontent">CSC: How to deal with the waste of this system? Is there a problem with super Cryptococcus neoformans?</p>
+
                                            <p class="pcontent">The protein needs to be separated before produced.
+
                                                At the same time,this process will produce the bio-waste.
+
                                                The special process is high temperature and high pressure.
+
                                                It can be used in the factory's original waste system under the high temperature and high pressure environment.
+
                                            </p>
+
                                            <p class="pcontent">We use the general strains, and there is no possibility of mutations.
+
                                                In addition, with the monitoring of environmental, the probability of mutation is greatly reduced to reach biosafety.
+
                                            </p>
+
                                            <p class="pcontent">CSC position description:</p>
+
                                            <p class="pcontent">Algae is one of the implementation of the CCS plan, and they always want to build a multi-system.
+
                                                Each system has its advantages and disadvantages.
+
                                                Therefore, what we proposed was a one more choice for them and they were glad to hear
+
                                                that <i>E. coli</i> and contribute to CCS&U (Carbon Capture Storage and Utilization).
+
                                            </p>
+
  
                                            <h5 class="boldh5">Part2. Customer demand investigation</h5>
+
                                    A system can be defined as an arbitrary portion of a process considered for
                                            <ol>
+
                                    analysis,
                                                <li class="licontent">The research and development of new technologies,
+
                                    in which in this case, is an engineered carbon capturing <i>E. coli</i>.
                                                    which level will be considered to mature and worthy investing specifically?
+
                                </p>
                                                </li>
+
                                                <p class="pcontent">There are three conditions:</p>
+
                                                <p class="pcontent">1) Feasibility of laboratory technology: It’s ok with technical confirmation.</p>
+
                                                <p class="pcontent">2) Feasibility of engineering: It’s feasible under engineering equipment construction,
+
                                                    application of space and on-site environmental conditions.
+
                                                </p>
+
                                                <p class="pcontent">3) Feasibility of economic: total cost (input, output) must be positive benefits.</p>
+
                                                <li class="licontent">There is a problem of limited space in Taiwan, how much space did we need to reduce at least in the enterprise?</li>
+
                                                <p class="pcontent">This proposition should be how much CO<sub>2</sub> the technology can absorb per unit area.
+
                                                    Based on this basis, Industrial will evaluate the existing space of the factory,
+
                                                    consider how much CO<sub>2</sub> can be absorbed, investment cost of equipment,
+
                                                    the amount of CO<sub>2</sub> that can be reduced, and calculate the input and output to evaluate
+
                                                    whether there is positive benefit.
+
                                                </p>
+
                                                <li class="licontent">We will consider the secondary cost of waste disposal,
+
                                                    just like the application of your company unit in basic-oxygen-furnace slag,
+
                                                    will you consider the cost of waste recycling be beneficial?
+
                                                    Or is there a problem caused by China Steel and secondary pollution?
+
                                                </li>
+
                                                <p class="pcontent">This part cannot be provided due to operational confidentiality.
+
                                                    It is recommended that this proposition should be turned into be directly used as a marketable product.
+
                                                    The cost of the resource should be assessed by the Life Cycle Assessment (LCA) as a whole.
+
                                                </p>
+
                                                <li class="licontent">Since our project is facing the problem about the higher cost of culture medium,
+
                                                    we would like to ask you about the benefit of carbon fixation and cost of carbon fixation method.
+
                                                </li>
+
                                                <p class="pcontent">The cost of carbon fixation depends on the carbon capture and storage methods used.
+
                                                    For example, the calcium circuit developed by the Industrial Research Institute is used to capture carbon.
+
                                                    The recent cost of carbon capture is intended to be reduced to US$30 per ton, and US$10 per ton of geological storage is required.
+
                                                    Competition between carbon capture methods can be assessed by cost and overall utilization of reuse.
+
                                                </p>
+
                                                <li class="licontent">Regarding the part of industry-university cooperation,
+
                                                    I would like to ask why China Steel chose to cooperate with Annan Campus in NCKU for microalgae carbon fixation.
+
                                                </li>
+
                                                <p class="pcontent">When the former academic research unit strives for the NEP project (National Energy Program),  
+
                                                    the technology that the audited authority usually requires that project must be adopted by the industry.
+
                                                    Therefore, both the academic research center and the industry usually sign the cooperation letter of intent for review.
+
                                                    For China Steel, it is willing to support the academic research community to conduct
+
                                                    forward-looking technical research with national resources
+
                                                    to provide the technical information needed to evaluate feasibility.
+
                                                </p>
+
                                                <li class="licontent">The medium we need will still consume energy in the process of preparation,
+
                                                    and it may cause carbon emissions simultaneously.
+
                                                    We wonder how to regard upon overall carbon footprint may be increased from the perspective of enterprise.
+
                                                </li>
+
                                                <p class="pcontent">If the overall footprint of the carbon fixation process developed may be positive (increased),
+
                                                    in general, from the perspective of carbon reduction within the enterprise, there is no possibility of application.
+
                                                    If the derived external carbon reduction benefit is greater than the internal carbon loss,
+
                                                    it proves to have a positive net benefit to the environment.
+
                                                    As long as it meets the feasibility of engineering and economic, the enterprise is willing to adopt it.
+
                                                </p>
+
                                                <li class="licontent">Research on carbon fixation, what is the driving force for China Steel in addition to economic benefits?</li>
+
                                                <p class="pcontent">Regulatory requirements, corporate identity and social responsibility.</p>
+
                                            </ol>
+
  
                                            <h5 class="boldh5">Part3. Picture Record</h5>
+
                                <p class="pcontent">
                                            <div class="row">
+
                                    The engineered <i>E. coli</i> BL21 (DE3) is cultured in M9 medium with formula
                                                <div class="col-6">
+
                                    adjusted so that xylose is the sole carbon source. The aforementioned M9 Medium
                                                    <img class="bigimg" src="https://static.igem.org/mediawiki/2018/7/75/T--NCKU_Tainan--applied_design_csc1.png">
+
                                    contains
                                                </div>
+
                                    4 (g/l) xylose and 1/1000 LB medium (the carbon consumed from LB medium can be
                                                <div class="col-6">
+
                                    ignored). By applying the law of conservation of mass, which states that mass
                                                    <img class="bigimg" src="https://static.igem.org/mediawiki/2018/7/70/T--NCKU_Tainan--applied_design_csc2.png">
+
                                    may neither be created nor destroyed, the material balance for carbon in an
                                                </div>
+
                                     engineered <i>E. coli</i> may simply be written as
                                            </div>
+
                                            <div class="row">
+
                                                <div class="col-6">
+
                                                    <img class="bigimg" src="https://static.igem.org/mediawiki/2018/f/fd/T--NCKU_Tainan--applied_design_csc3.png">
+
                                                </div>
+
                                                <div class="col-6">
+
                                                    <img class="bigimg" src="https://static.igem.org/mediawiki/2018/f/f6/T--NCKU_Tainan--applied_design_csc4.png">
+
                                                </div>
+
                                            </div>
+
                                        </div>
+
                                     </div>  
+
                                </div>
+
  
                                <div id="Business_Model">
+
                                    $${\{C_{CO_2}\ in\}\ +\ \{C_{xylose}\}\ -\ \{C_{CO_2}\ out\}\ -\ \{C_{waste}\}\
                                     <h3>Business Model</h3>
+
                                    =\ \{C_{biomass}\}...(1)}$$
                                     <div class="centerimg">
+
 
                                        <img style="width: 100%; height: auto;" src="https://static.igem.org/mediawiki/2018/4/48/T--NCKU_Tainan--applied_design_business_model.png" alt="gasflow">
+
                                    Considering the difficulties in measuring carbon in <i>E. coli</i> metabolic
                                     </div>
+
                                    waste and
                                     <p class="pcontent">
+
                                    that C<sub>waste</sub> would be positive, the equation reduces to
                                     </p>
+
 
                                    <h5 class="boldh5"></h5>
+
                                    $${\{C_{CO_2}\ in\}\ -\ \{C_{CO_2}\ out\}\ ≥\ \{C_{biomass}\}\ -\
                                 </div>
+
                                    \{C_{xylose}\}...(2)}$$
 +
 
 +
                                    Let {C<sub>CO<sub>2</sub></sub> net}= {C<sub>CO<sub>2</sub></sub> in} - {C<sub>CO<sub>2</sub></sub>
 +
                                    out}, equation (2) further simplifies to
 +
 
 +
                                    $${\{C_{CO_2}\ net\}\ ≥\ \{C_{biomass}\}\ -\ \{C_{xylose}\}...(3)}$$
 +
 
 +
                                     If C<sub>waste</sub> is very small and negligible, we can obtain the net amount
 +
                                     of carbon
 +
                                    dioxide fixed over time. If, on the contrary, C<sub>waste</sub> cannot be
 +
                                    neglected,
 +
                                    equation (3) allows us to estimate the minimum net amount of carbon dioxide
 +
                                    fixed.
 +
                                </p>
 +
 
 +
                                <p class="pcontent">
 +
                                    C<sub>biomass</sub> can be calculate by multiplying O.D. 600 to DCW and mass
 +
                                    percent of carbon in <i>E. coli</i> biomass. The O.D. 600 of engineered <i>E.
 +
                                        coli</i> is
 +
                                    measured after a 12-hour cultivation and the result obtained is 0.45O.D. . Yin
 +
                                    Li et al. reported that dry cell weight (DCW) of <i>E. coli</i> is
 +
 
 +
                                    $${0.35g\over L ∙ 𝑂.𝐷. 600}$$
 +
 
 +
                                    , determined by experiment. <i>E. coli</i> biomass contains 48% of carbon by
 +
                                    mass.
 +
 
 +
                                    $${C_{biomass}\ =\ 0.4511\ ×\ 0.35\ ×\ 48\%}$$
 +
                                    $${=\ 0.0758\ g/L}$$
 +
                                </p>
 +
 
 +
                                <p class="pcontent">
 +
                                     On the other hand, C<sub>xylose</sub> can be calculated by multiplying the
 +
                                     amount of
 +
                                    xylose consumed per unit volume of broth to the mass percent of carbon in
 +
                                    xylose. Xylose consumption is calculated by using a DNS kit that measures the
 +
                                    concentration of reducing sugar and the result obtained is 0.1723g of xylose
 +
                                    consumed per liter of M9 medium. Carbon mass percentage of xylose
 +
                                    is 40%.
 +
 
 +
                                    $${C_{xylose}\ =\ 0.1723\ ×\ 40\%\ =\ 0.0689\ g/L}$$
 +
 
 +
                                    By equation (3)
 +
 
 +
                                    $${C_{CO_2\ net}\ =\ 0.0758\ -\ 0.0689}$$
 +
 
 +
                                    $${=\ 0.0069\ g/L}$$
 +
 
 +
                                    Since the <i>E. coli</i> has been cultured for 12 hours, we can calculate the
 +
                                    rate of
 +
                                    carbon fixation by
 +
 
 +
                                    $${Rate\ of\ carbon\ fixation\ =\ {𝐶_{𝐶𝑂_2\ 𝑛𝑒𝑡}\over 12}}$$
 +
 
 +
                                    $${=\ {0.0069\over 12}}$$
 +
 
 +
                                    $${=\ 0.575\ {mg\over L ∙hr}}$$
 +
 
 +
                                    To find out how much carbon in biomass comes from the carbon in CO2 captured by the
 +
                                    heterotrophic microbes, we can divide equation (3) by the mass percentage of carbon
 +
                                    in biomass:
 +
 
 +
 
 +
                                </p>
 +
                                <p class="pcontent">$${{{ \{ CO_{2 net}} \} \over \{ {C_{biomass}} \} } \geq {1 -
 +
                                     { \{ {C_{xylose}} \} \over \{ {C_{biomass}} \} }}}$$</p>
 +
                                <p class="pcontent">We can thus calculate the ratio with our experiment results:</p>
 +
                                <p class="pcontent">$${{Ratio \ of \ carbon \ in \ CO_2 \ fixed \ to \ carbon \ in
 +
                                    \ biomass} =
 +
                                    {1 -{0.0689 \over 0.0758}} = 9.1 \%}$$
 +
                                 </p>
  
                                <div id="Cost_Evaluation">
+
                            </div>
                                    <h3>Cost Evaluation</h3>
+
 
                                    <p class="pcontent">The cost evaluation is always crucial for product being on the market. To compare our engineered <i>E. coli</i> to microalgae, we
+
                            <div id="Reference">
                                    calculate how much the cost it would be when capturing 1000 kilograms CO<sub>2</sub>.
+
                                <h3>References</h3>
                                    </p>
+
                                <ol>
                                    <h5 class="boldh5">Volume</h5>
+
                                     <li class="smallp">Gong, F., Liu, G., Zhai, X., Zhou, J., Cai, Z., & Li, Y. (2015).
                                    <p class="pcenter" id="closep"> Table 1  Volume require in capturing 1000 kg CO<sub>2</sub> </p>
+
                                         Quantitative analysis of an engineered CO<sub>2</sub>-fixing <i>Escherichia
                                    <div class="card card-body">
+
                                             Coli</i> reveals great potential of heterotrophic CO<sub>2</sub> fixation.
                                        <table>
+
                                         Biotechnology for Biofuels,8(1). doi:10.1186/s13068-015-0268-1</li>
                                            <tr>
+
                                    <li class="smallp">Stockar, U. V., & Liu, J. (1999). Does microbial life always
                                                <th colspan="1">Organisms</th>
+
                                        feed on negative entropy? Thermodynamic analysis of microbial growth.
                                                <th colspan="1">CO<sub>2</sub>-fixation rate (mg/L*hr)</th>
+
                                        Biochimica Et Biophysica Acta (BBA) - Bioenergetics,1412(3), 191-211.
                                                <th colspan="1">Biomass concentration (gDCW/L)</th> 
+
                                        doi:10.1016/s0005-2728(99)00065-1</li>
                                                <th colspan="1">Specific CO<sub>2</sub>-fixation rate</th> 
+
                                </ol>
                                                <th colspan="1">Volume needed (L)</th>                                                       
+
                                            </tr>
+
                                            <tr>
+
                                                <td colspan="1">Engineered <i>E. coli</i></td>
+
                                                <td colspan="1">19.6</td>
+
                                                <td colspan="1">0.87</td>
+
                                                <td colspan="1">22.5</td>
+
                                                <td colspan="1">51000</td>
+
                                            </tr>
+
                                            <tr>
+
                                                <td colspan="1">Chlorella vulgaris</td>
+
                                                <td colspan="1">53</td>
+
                                                <td colspan="1">5.7</td>
+
                                                <td colspan="1">9.3</td>
+
                                                <td colspan="1">19000</td>
+
                                            </tr>
+
                                        </table>
+
                                     </div>
+
                                    <h5 class="boldh5">Cost</h5>
+
                                    <p class="pcontent">
+
                                        The most expensive source in the medium of our engineered <i>E. coli</i> is xylose.  
+
                                        1 mole xylose will capture 0.17 mole CO<sub>2</sub>,  
+
                                        so it would need 20.0535 kilograms xylose and 1 kilogram xylose is cost 2 USD.  
+
                                        The total cost for our engineered <i>E. coli</i> is require 40.107 USD for capture 1 kilogram CO<sub>2</sub>.
+
                                        In contrast, microalgae need 1000 liter to capture 250 gram CO<sub>2</sub>,  
+
                                        so it need 4000 liter (about 4 Tons) water and 1 tons is cost 9.78 USD (300NT).  
+
                                         The total cost for microalgae is require 39.13 USD.
+
                                    </p>
+
                                    <p class="pcenter" id="closep"> Table 2 Cost require in capturing 1000 kg CO<sub>2</sub> </p>
+
                                    <div class="card card-body">
+
                                        <table>
+
                                             <tr>
+
                                                <th colspan="1">Item</th>
+
                                                <th colspan="1">Microalgae</th>
+
                                                <th colspan="1">Engineered <i>E. coli</i></th>                                           
+
                                            </tr>
+
                                            <tr>
+
                                                <td colspan="1">CO2 utilizing rate</td>
+
                                                <td colspan="1">250g/m3/day</td>
+
                                                <td colspan="1">19.6 mg/g (DRY cell weight)</td>
+
                                            </tr>
+
                                            <tr>
+
                                                <td colspan="1">source required for 1kg CO2 utilization</td>
+
                                                <td colspan="1">4 tons of water</td>
+
                                                <td colspan="1">20.0535kg xylose</td>
+
                                            </tr>
+
                                            <tr>
+
                                                <td colspan="1">Cost</td>
+
                                                <td colspan="1">39.13USD</td>
+
                                                <td colspan="1">40.107USD</td>
+
                                            </tr>
+
                                            <tr>
+
                                                <td colspan="1">Source</td>
+
                                                <td colspan="1">NCKU Annan campus</td>
+
                                                <td colspan="1">Adjust reference<sup>[1]</sup> and experiment</td>
+
                                            </tr>
+
                                        </table>
+
                                        <p class="pcontent">According to our research of mircoalgae culture in AN-nan campus,
+
                                            we list the data of its cost and CO<sub>2</sub> utilization rate to help us optimize our project. As a result, we conclude that Engineered E. coli has a
+
                                            strong competitive advantage with proper cost to apply it.  
+
                                         </p>
+
                                    </div>
+
                                </div>
+
                               
+
                                <div id="Reference">
+
                                    <h3>Reference</h3>
+
                                    <ol>
+
                                        <li class="smallp">Fuyu G, Guoxia L, Xiaoyun Z, Jie Z, Zhen C and Yin L. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Gong et al. Biotechnology for Biofuels, 2015, 8:86.</li>
+
                                        <li class="smallp">
+
張嘉修、陳俊延、林志生、楊勝仲、周德珍、郭子禎、顏宏偉、李澤民 (2015), 二氧化碳再利用─微藻養殖, 科學發展 2015 年 6 月│ 510 期 </li>
+
                                        <li class="smallp"> Lawrence Irlam (2017), GLOBAL COSTS OF CARBON CAPTURE AND
+
STORAGE, Global CCS Institute, Senior Adviser Policy & Economics, Asia-Pacific Region </li>
+
                                        <li class="smallp">Jin Hwan Park, Jae Eun Oh, Kwang Ho Lee, Ji Young Kim, and Sang Yup Lee. Rational Design of Escherichia coli for L‑Isoleucine Production. [ACS Synth Biol.](https://www.ncbi.nlm.nih.gov/pubmed/23656230#) 2012</li>
+
                                        <li class="smallp">M. KUNDAK, L. LAZI], J. RNKO. CO2 EMISSIONS IN THE STEEL INDUSTRY. METALURGIJA 48, 2009</li>
+
                                        <li class="smallp">V. N. Kalpana, D. Sathya Prabhu, S. Vinodhini and Devirajeswari V. Biomedical waste and its management. Journal of Chemical and Pharmaceutical Research, 2016</li>
+
                                        <li class="smallp">Qian Ma, Quanwei Zhang, Qingyang Xu, Chenglin Zhang, Yanjun Li, Xiaoguang Fan, Xixian Xie, Ning Chen. Systems metabolic engineering strategies for the production of amino acids. Synthetic and Systems Biotechnology 2 (2017)</li>
+
                                        <li class="smallp">Jørgen Barsett Magnus, Daniel Hollwedel, Marco Oldiges, and Ralf Takors. Monitoring and Modeling of the Reaction Dynamics in the Valine/Leucine Synthesis Pathway in Corynebacterium glutamicum. Biotechnol. Prog. 2006</li>
+
                                        <li class="smallp">Isao Kusumoto. Industrial Production of L-Glutamine. American Society for Nutritional Sciences, 2001</li>
+
                                    </ol>
+
                                </div>
+
 
                             </div>
 
                             </div>
 
                         </div>
 
                         </div>
Line 388: Line 250:
 
             </div>
 
             </div>
 
         </div>
 
         </div>
        <script>
+
    </div>
         $(document).ready(function() {
+
    <script>
          $(window).scroll(function() {
+
         $(document).ready(function () {
            var scrollPercentage = (document.documentElement.scrollTop + document.body.scrollTop) / (document.documentElement.scrollHeight - document.documentElement.clientHeight);    
+
            $(window).scroll(function () {
            if(scrollPercentage >= 0.95) {
+
                var scrollPercentage = (document.documentElement.scrollTop + document.body.scrollTop) /
              var position = $("#sidelist").position();
+
                    (document.documentElement.scrollHeight - document.documentElement.clientHeight);
              if(position == undefined){}
+
                if (scrollPercentage >= 0.95) {
              else{
+
                    var position = $("#sidelist").position();
                $('#sidelist').css({"position": "fixed", "top": "105px"});
+
                    if (position == undefined) {} else {
              }
+
                        $('#sidelist').css({
            } else {
+
                            "position": "fixed",
              if ($(this).scrollTop() >= 80) {
+
                            "top": "105px"
                var position = $("#sidelist").position();
+
                        });
                  if(position == undefined){}
+
                    }
                  else{
+
                } else {
                    $('#sidelist').css({"position": "fixed", "top": "145px", "margin-top": "0px"});
+
                    if ($(this).scrollTop() >= 500) {
                  }
+
                        var position = $("#sidelist").position();
              } else {
+
                        if (position == undefined) {} else {
                $('#sidelist').removeAttr('style');
+
                            $('#sidelist').css({
              }
+
                                "position": "fixed",
            }
+
                                "top": "145px",
          });
+
                                "margin-top": "0px"
          $(function(){
+
                            });
            $('i.fa-arrow-up').click(function(){
+
                        }
            $('html, body').animate({scrollTop:0},600);
+
                    } else {
              return false;
+
                        $('#sidelist').removeAttr('style');
 +
                    }
 +
                }
 +
            });
 +
            $(function () {
 +
                $('i.fa-arrow-up').click(function () {
 +
                    $('html, body').animate({
 +
                        scrollTop: 0
 +
                    }, 600);
 +
                    return false;
 +
                });
 
             });
 
             });
          });
 
 
         });
 
         });
        </script>
+
    </script>
        <script src="https://2018.igem.org/Team:NCKU_Tainan/js/frame/T--NCKU_Tainan--jquery-1_12_4_min_js?action=raw&amp;ctype=text/javascript"></script>
+
    <script src="https://2018.igem.org/Team:NCKU_Tainan/js/frame/T--NCKU_Tainan--jquery-1_12_4_min_js?action=raw&amp;ctype=text/javascript"></script>
        <script src="https://2018.igem.org/Template:NCKU_Tainan/js/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
+
    <script src="https://2018.igem.org/Template:NCKU_Tainan/js/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
     </body>
+
     <script src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML' async></script>
 +
</body>
 +
 
 
</html>
 
</html>
 
{{NCKU_Tainan/footer}}
 
{{NCKU_Tainan/footer}}

Latest revision as of 16:09, 1 November 2018

Measurement

A Novel Approach to Measure
Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)