Difference between revisions of "Team:NCKU Tainan/Measurement"

(Blanked the page)
 
(86 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
{{NCKU_Tainan/header}} {{NCKU_Tainan/navbar}} {{NCKU_Tainan/style}}
 +
<html>
  
 +
<head>
 +
    <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/measurement?action=raw&ctype=text/css">
 +
</head>
 +
 +
<body data-spy="scroll" data-target=".navbar-example">
 +
    <div class="container content">
 +
        <div class="headstyle">
 +
            <h1 class="head">Measurement</h1>
 +
        </div>
 +
        <div class="righttitle">
 +
            <h6 class="subtitle">A Novel Approach to Measure</h6>
 +
        </div>
 +
        <div class="navbar-example">
 +
            <div class="row">
 +
                <div class="col-2 side">
 +
                    <div id="sidelist" class="list-group">
 +
                        <a class="list-group-item list-group-item-action" href="#achievement">Achievement</a>
 +
                        <a class="list-group-item list-group-item-action" href="#XUI">XUI</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Carbon_Fixation">Carbon Fixation
 +
                            Estimation</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Reference">References</a>
 +
                        <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x"
 +
                                aria-hidden="true"></i></a>
 +
                    </div>
 +
                </div>
 +
                <div class="col-10">
 +
                    <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
 +
                        <div class="container">
 +
                            <div id="achievement">
 +
                                <h3>Achievement</h3>
 +
                                <div class="achievementborder">
 +
                                    <ol>
 +
                                        <br>
 +
                                        <li class="bigli">Develop a new measurement approach to determine the carbon
 +
                                            fixation ability of each strain </li>
 +
                                        <br>
 +
                                        <li class="bigli">Estimate the carbon fixation amount with our experiment
 +
                                            result </li>
 +
                                        <br>
 +
                                    </ol>
 +
                                </div>
 +
                            </div>
 +
                            <div id="XUI">
 +
                                <h3>The Xylose Utilization Index (XUI)</h3>
 +
                                <p class="pcontent">In the total solution experiment,
 +
                                    we strive to measure the carbon fixation amount of each sample.
 +
                                    After reading numerous publications,
 +
                                    we found out that previous researches determine the efficiency of carbon fixation
 +
                                    via measuring the decrease of carbon dioxide concentration in the closed system or
 +
                                    measure
 +
                                    the weight percentage of <sup>14</sup>C radioisotope in the dry cell.
 +
                                    However, due to biosafety constrain of our lab, we can barely use the radioisotope.
 +
                                    Measuring the decrease of carbon dioxide concentration in the closed system is also
 +
                                    impractical for us since we have too much test samples.
 +
                                    A new method to measure multiple samples in the short period of time is developed
 +
                                    by our team.
 +
                                    We are able to evaluate the fixation efficiency of each sample with optical density
 +
                                    O.D. 600 and
 +
                                    xylose consumption. We have measure various construction to prove that the enzyme
 +
                                    of our construction
 +
                                    is necessary for carbon fixation.
 +
                                </p>
 +
                                <p class="pcontent">The test samples below were incubated in a modified M9 medium which
 +
                                    substitutes xylose for glucose.
 +
                                    1/1000 of Luria-Bertani (LB) medium was added to support trace elements.
 +
                                    Since the concentration of LB medium is too low, it doesn’t contribute to the
 +
                                    carbon source of the bacteria.
 +
                                </p>
 +
                                <p class="pcontent">We defined a new index, Xylose Utilization Index (XUI),
 +
                                    to describe the potential of carbon fixation.
 +
                                    We can compare this index of each strain to find out the strain that has highest
 +
                                    capacity of carbon fixation.
 +
                                </p>
 +
                                <p class="pcontent">To define the XUI, we firstly made two assumptions: </p>
 +
                                <ol>
 +
                                    <li class="licontent">O.D. 600 of the sample has linear relationship to dry cell
 +
                                        weight (biomass).
 +
                                        Optical density is frequently used as a means of describing the cell density in
 +
                                        the broth.
 +
                                        We measured the dry cell weight of samples in different O.D. value and
 +
                                        discovered that it has linear relationship.
 +
                                        We conclude that we can utilize O.D. value to estimate the dry cell weight.
 +
                                        1 O.D. of BL21 (DE3) strain per litre yields the dry cell weight of 0.8 gram.
 +
                                    </li>
 +
                                    <div class="centerimg">
 +
                                        <img class="smallimg" src="https://static.igem.org/mediawiki/2018/f/f2/T--NCKU_Tainan--Results_Fig_9.PNG">
 +
                                        <p class="pcenter">Fig 1. shows the dry cell weight of BL21 (DE3) incubated in
 +
                                            modified M9 xylose medium. A linear relationship between O.D. and dry cell
 +
                                            weight is observed.</p>
 +
                                    </div>
 +
                                    <li class="licontent">The elemental formula of <i>E. coli</i> should be fixed or
 +
                                        varies within a small range.
 +
                                        Although the formula may have variations in different growth condition,
 +
                                        we assume that such error can be ignore during the following calculation.
 +
                                    </li>
 +
                                </ol>
 +
                                <p class="pcontent">Combining these two assumptions, we can conclude that in a fixed
 +
                                    O.D. 600 value,
 +
                                    the composite weight of carbon is also fixed.
 +
                                    Thus, O.D. 600 can be considered equivalent to carbon weight of the bacteria.
 +
                                </p>
 +
                                <p class="pcontent">After these two assumptions,
 +
                                    the XUI is designed to evaluate the carbon fixation ability of each strain.
 +
                                    The definition of the index is xylose consumption over O.D. 600.
 +
                                    O.D. 600 measurement can be viewed as the weight of carbon of the bacteria.
 +
                                    The index shows the ratio of xylose consumption per biomass.
 +
                                    For wild type <i>E. coli</i>, it only consumes xylose (the sole carbon source
 +
                                    provided by the medium)
 +
                                    as its carbon source. Although some native <i>E. coli</i> pathway may utilize CO<sub>2</sub>
 +
                                    (such as lipid synthesis), the amount is too small to be considered.
 +
                                    As for engineered strain, carbon dioxide can be utilized as its carbon source.
 +
                                    By producing same amount of carbon biomass, it requires less xylose.
 +
                                    We can thus compare the XUI of each strain to determine the strain that fix carbon.
 +
                                    The less the XUI in the sample, the more possibility that it fix carbon.
 +
                                </p>
 +
                                <p class="pcontent">$${XUI = {{xylose \ consumption \ (g/l)} \over {O.D. 600}}}$$</p>
 +
                                <img class="gif" src="">
 +
                                <p class="pcontent">We use the XUI to compare the carbon fixation efficiency of
 +
                                    each strain and prove the function of each system.
 +
                                    For the experiment result, please view the Result(hyperlink) page.
 +
                                </p>
 +
                            </div>
 +
 +
                            <div id="Carbon_Fixation">
 +
                                <h3>Carbon Fixation amount estimation</h3>
 +
                                <p class="pcontent">To find out how much and how efficient genetically engineered <i>E.
 +
                                        coli</i> can fix
 +
                                    carbon dioxide, we use the material balance concept to evaluate the heterotrophic
 +
                                    CO<sub>2</sub> fixation process.
 +
                                    Consider a system composed of a single component, the general material balance can
 +
                                    be written as:
 +
                                    $${\{Input\ to\ the\ system\}\ –\ \{Output\ to\ the\ system\}\ =\
 +
                                    \{Accumulation\ in\ the\ system\}}$$
 +
 +
                                    A system can be defined as an arbitrary portion of a process considered for
 +
                                    analysis,
 +
                                    in which in this case, is an engineered carbon capturing <i>E. coli</i>.
 +
                                </p>
 +
 +
                                <p class="pcontent">
 +
                                    The engineered <i>E. coli</i> BL21 (DE3) is cultured in M9 medium with formula
 +
                                    adjusted so that xylose is the sole carbon source. The aforementioned M9 Medium
 +
                                    contains
 +
                                    4 (g/l) xylose and 1/1000 LB medium (the carbon consumed from LB medium can be
 +
                                    ignored). By applying the law of conservation of mass, which states that mass
 +
                                    may neither be created nor destroyed, the material balance for carbon in an
 +
                                    engineered <i>E. coli</i> may simply be written as
 +
 +
                                    $${\{C_{CO_2}\ in\}\ +\ \{C_{xylose}\}\ -\ \{C_{CO_2}\ out\}\ -\ \{C_{waste}\}\
 +
                                    =\ \{C_{biomass}\}...(1)}$$
 +
 +
                                    Considering the difficulties in measuring carbon in <i>E. coli</i> metabolic
 +
                                    waste and
 +
                                    that C<sub>waste</sub> would be positive, the equation reduces to
 +
 +
                                    $${\{C_{CO_2}\ in\}\ -\ \{C_{CO_2}\ out\}\ ≥\ \{C_{biomass}\}\ -\
 +
                                    \{C_{xylose}\}...(2)}$$
 +
 +
                                    Let {C<sub>CO<sub>2</sub></sub> net}= {C<sub>CO<sub>2</sub></sub> in} - {C<sub>CO<sub>2</sub></sub>
 +
                                    out}, equation (2) further simplifies to
 +
 +
                                    $${\{C_{CO_2}\ net\}\ ≥\ \{C_{biomass}\}\ -\ \{C_{xylose}\}...(3)}$$
 +
 +
                                    If C<sub>waste</sub> is very small and negligible, we can obtain the net amount
 +
                                    of carbon
 +
                                    dioxide fixed over time. If, on the contrary, C<sub>waste</sub> cannot be
 +
                                    neglected,
 +
                                    equation (3) allows us to estimate the minimum net amount of carbon dioxide
 +
                                    fixed.
 +
                                </p>
 +
 +
                                <p class="pcontent">
 +
                                    C<sub>biomass</sub> can be calculate by multiplying O.D. 600 to DCW and mass
 +
                                    percent of carbon in <i>E. coli</i> biomass. The O.D. 600 of engineered <i>E.
 +
                                        coli</i> is
 +
                                    measured after a 12-hour cultivation and the result obtained is 0.45O.D. . Yin
 +
                                    Li et al. reported that dry cell weight (DCW) of <i>E. coli</i> is
 +
 +
                                    $${0.35g\over L ∙ 𝑂.𝐷. 600}$$
 +
 +
                                    , determined by experiment. <i>E. coli</i> biomass contains 48% of carbon by
 +
                                    mass.
 +
 +
                                    $${C_{biomass}\ =\ 0.4511\ ×\ 0.35\ ×\ 48\%}$$
 +
                                    $${=\ 0.0758\ g/L}$$
 +
                                </p>
 +
 +
                                <p class="pcontent">
 +
                                    On the other hand, C<sub>xylose</sub> can be calculated by multiplying the
 +
                                    amount of
 +
                                    xylose consumed per unit volume of broth to the mass percent of carbon in
 +
                                    xylose. Xylose consumption is calculated by using a DNS kit that measures the
 +
                                    concentration of reducing sugar and the result obtained is 0.1723g of xylose
 +
                                    consumed per liter of M9 medium. Carbon mass percentage of xylose
 +
                                    is 40%.
 +
 +
                                    $${C_{xylose}\ =\ 0.1723\ ×\ 40\%\ =\ 0.0689\ g/L}$$
 +
 +
                                    By equation (3)
 +
 +
                                    $${C_{CO_2\ net}\ =\ 0.0758\ -\ 0.0689}$$
 +
 +
                                    $${=\ 0.0069\ g/L}$$
 +
 +
                                    Since the <i>E. coli</i> has been cultured for 12 hours, we can calculate the
 +
                                    rate of
 +
                                    carbon fixation by
 +
 +
                                    $${Rate\ of\ carbon\ fixation\ =\ {𝐶_{𝐶𝑂_2\ 𝑛𝑒𝑡}\over 12}}$$
 +
 +
                                    $${=\ {0.0069\over 12}}$$
 +
 +
                                    $${=\ 0.575\ {mg\over L ∙hr}}$$
 +
 +
                                    To find out how much carbon in biomass comes from the carbon in CO2 captured by the
 +
                                    heterotrophic microbes, we can divide equation (3) by the mass percentage of carbon
 +
                                    in biomass:
 +
 +
 +
                                </p>
 +
                                <p class="pcontent">$${{{ \{ CO_{2 net}} \} \over \{ {C_{biomass}} \} } \geq {1 -
 +
                                    { \{ {C_{xylose}} \} \over \{ {C_{biomass}} \} }}}$$</p>
 +
                                <p class="pcontent">We can thus calculate the ratio with our experiment results:</p>
 +
                                <p class="pcontent">$${{Ratio \ of \ carbon \ in \ CO_2 \ fixed \ to \ carbon \ in
 +
                                    \ biomass} =
 +
                                    {1 -{0.0689 \over 0.0758}} = 9.1 \%}$$
 +
                                </p>
 +
 +
                            </div>
 +
 +
                            <div id="Reference">
 +
                                <h3>References</h3>
 +
                                <ol>
 +
                                    <li class="smallp">Gong, F., Liu, G., Zhai, X., Zhou, J., Cai, Z., & Li, Y. (2015).
 +
                                        Quantitative analysis of an engineered CO<sub>2</sub>-fixing <i>Escherichia
 +
                                            Coli</i> reveals great potential of heterotrophic CO<sub>2</sub> fixation.
 +
                                        Biotechnology for Biofuels,8(1). doi:10.1186/s13068-015-0268-1</li>
 +
                                    <li class="smallp">Stockar, U. V., & Liu, J. (1999). Does microbial life always
 +
                                        feed on negative entropy? Thermodynamic analysis of microbial growth.
 +
                                        Biochimica Et Biophysica Acta (BBA) - Bioenergetics,1412(3), 191-211.
 +
                                        doi:10.1016/s0005-2728(99)00065-1</li>
 +
                                </ol>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </div>
 +
    <script>
 +
        $(document).ready(function () {
 +
            $(window).scroll(function () {
 +
                var scrollPercentage = (document.documentElement.scrollTop + document.body.scrollTop) /
 +
                    (document.documentElement.scrollHeight - document.documentElement.clientHeight);
 +
                if (scrollPercentage >= 0.95) {
 +
                    var position = $("#sidelist").position();
 +
                    if (position == undefined) {} else {
 +
                        $('#sidelist').css({
 +
                            "position": "fixed",
 +
                            "top": "105px"
 +
                        });
 +
                    }
 +
                } else {
 +
                    if ($(this).scrollTop() >= 500) {
 +
                        var position = $("#sidelist").position();
 +
                        if (position == undefined) {} else {
 +
                            $('#sidelist').css({
 +
                                "position": "fixed",
 +
                                "top": "145px",
 +
                                "margin-top": "0px"
 +
                            });
 +
                        }
 +
                    } else {
 +
                        $('#sidelist').removeAttr('style');
 +
                    }
 +
                }
 +
            });
 +
            $(function () {
 +
                $('i.fa-arrow-up').click(function () {
 +
                    $('html, body').animate({
 +
                        scrollTop: 0
 +
                    }, 600);
 +
                    return false;
 +
                });
 +
            });
 +
        });
 +
    </script>
 +
    <script src="https://2018.igem.org/Team:NCKU_Tainan/js/frame/T--NCKU_Tainan--jquery-1_12_4_min_js?action=raw&amp;ctype=text/javascript"></script>
 +
    <script src="https://2018.igem.org/Template:NCKU_Tainan/js/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
 +
    <script src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML' async></script>
 +
</body>
 +
 +
</html>
 +
{{NCKU_Tainan/footer}}

Latest revision as of 16:09, 1 November 2018

Measurement

A Novel Approach to Measure
Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)