Difference between revisions of "Team:NCKU Tainan/Applied Design"

 
(70 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
{{NCKU_Tainan/header}} {{NCKU_Tainan/navbar}} {{NCKU_Tainan/style}}
 
{{NCKU_Tainan/header}} {{NCKU_Tainan/navbar}} {{NCKU_Tainan/style}}
 
<html>
 
<html>
    <head>
+
 
        <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/applied_design?action=raw&ctype=text/css">
+
<head>
    </head>
+
    <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/applied_design?action=raw&ctype=text/css">
    <body data-spy="scroll" data-target=".navbar-example">
+
</head>
        <div class="container content">
+
 
         <h1 class="head">Product Design</h1>
+
<body data-spy="scroll" data-target=".navbar-example">
             <div class="navbar-example">
+
    <div class="container content">
                <div class="row">
+
         <div class="headstyle">
                    <div class="col-2 side">      
+
            <h1 class="head">Product Design</h1>
                        <div id="sidelist" class="list-group">
+
        </div>
                            <a class="list-group-item list-group-item-action" href="#Product_Design">Product Design</a>
+
        <div class="righttitle">
                            <a class="list-group-item list-group-item-action" href="#Entrepreneurship">Entrepreneurship</a>
+
             <h6 class="subtitle">Ideas Come True</h6>
                            <a class="list-group-item list-group-item-action" href="#Cost_Evaluation">Cost Evaluation</a>
+
        </div>
                            <a class="list-group-item list-group-item-action" href="#Future_Work">Future Work</a>
+
        <div class="navbar-example">
                            <a class="list-group-item list-group-item-action" href="#Reference">Reference</a>
+
            <div class="row">
                            <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x" aria-hidden="true"></i></a>
+
                <div class="col-2 side">
                        </div>
+
                    <div id="sidelist" class="list-group">
 +
                        <a class="list-group-item list-group-item-action" href="#Product_Design">Product Design</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Application">Application</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Business_Model">Business Model</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Cost_Evaluation">Cost Evaluation</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Future_Work">Future Work</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Reference">References</a>
 +
                        <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x"
 +
                                aria-hidden="true"></i></a>
 
                     </div>
 
                     </div>
                    <div class="col-10">
+
                </div>
                        <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
+
                <div class="col-10">
                            <div class="container">
+
                    <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
                                <div id="Product_Design">
+
                        <div class="container">
                                    <h3>Product Design</h3>
+
                            <div id="Product_Design">
                                    <img class="bigimg" src="https://static.igem.org/mediawiki/2018/2/26/T--NCKU_Tainan--applied_design_product.gif" alt="product design">
+
                                <h3>Product Design</h3>
                                    <ol>
+
                                <img class="bigimg" src="https://static.igem.org/mediawiki/2018/2/26/T--NCKU_Tainan--applied_design_product.gif"
                                        <li class="licontent">Overview</li>
+
                                    alt="product design">
                                        <p class="pcontent">The emission of carbon dioxide (CO<sub>2</sub> for better understanding) is a serious problem
+
                                <p class="pcenter">Fig 1. Flow chart of <i>E. coli</i> carbon utilization system </p>
                                            the world has faced for a century. Although existing methods can reduce carbon dioxide,
+
                                <ol>
                                            it still can't load massive emission of CO<sub>2</sub> from the industry.
+
                                    <li class="licontent">Overview</li>
                                            Thus, our team uses <i>E. coli</i> to capture CO<sub>2</sub>,
+
                                    <p class="pcontent">In this project, we, the NCKU Tainan Team, have proposed an
                                            providing another choice in excessive CO<sub>2</sub> emission problems.
+
                                         alternative way to reduce the emission of Carbon dioxide (CO<sub>2</sub>).
                                        </p>
+
                                         Referring to the opinions and feedbacks from many industry experts and
                                        <p class="pcontent">In addition, we trace back to the CO<sub>2</sub> emission source.
+
                                        professors, we design a new factory flow to capture CO<sub>2</sub> by <i>E.
                                            Factories are the main field to produce large amounts of CO<sub>2</sub>,
+
                                             coli</i> Not only our device meets the specs to commercialize, but it also
                                            so we designed a complete factory flow chart. We received lots of suggestions provided by industry,
+
                                         demonstrates high cost performance.
                                            professors and experts in different specialties.
+
                                            After considering all cost advantages, we have built a device which has commercial specifications.
+
                                        </p>
+
                                        <li class="licontent">Flow chart</li>
+
                                        <img class="bigimg" src="https://static.igem.org/mediawiki/2018/6/68/T--NCKU_Tainan--applied_design_overview.png" alt="overview">
+
                                        <p class="pcontent">There are many aspects we need to consider.
+
                                            First, we consider the emission velocity of carbon dioxide from the factory,  
+
                                            the medium exchange rate and the growth time of our <i>E. coli</i>. We design a process.
+
                                            The factory needs to replace the medium twice a day, so at one hour before replacing the medium,  
+
                                            the user needs to turn on switch C to discharge ninety percent of the medium.
+
                                            When it is time to replace the medium, switch C will be turned off and switch B will be turned on to refill medium.
+
                                            When sufficient medium is added,
+
                                            switch B will be turned off and switch A will be turned on to let carbon dioxide in.
+
                                         </p>
+
                                        <p class="pcontent">In order to reduce the cost, on the growth time of our <i>E. coli</i> and floor area,
+
                                            we decided to replace the medium every twelve hours and use 72 parallel bioreactors.
+
                                         </p>
+
                                        <li class="licontent">Detailed description</li>
+
                                        <h5 class="boldh5">A. Gas preparation system and flow system</h5>
+
                                        <img class="bigimg" src="https://static.igem.org/mediawiki/2018/4/46/T--NCKU_Tainan--applied_design_gasflow.png" alt="gasflow">
+
                                        <p class="pcontent">According to IGCC flow chart, the gas has been treated by sulfur and nitrogen removal and then
+
                                            enters the pipeline leading to the bioreactor.
+
                                            Use pump to enter air to neutralize the concentration of carbon dioxide.
+
                                            Control flow rate and split distribution with controlled valve.
+
                                            When the switch a turn on, the switch b will turn off, and vice versa.
+
                                            The carbon dioxide inlet and outlet will still open.
+
                                        </p>
+
                                        <h5 class="boldh5">B. Medium preparation</h5>
+
                                        <img class="bigimg" src="https://static.igem.org/mediawiki/2018/f/f4/T--NCKU_Tainan--applied_design_medium.png" alt="medium">
+
                                        <p class="pcontent">At this stage we will match the proportion of m9 salt and xylose and change it into powder.
+
                                            At one hour before replacing the medium, pour the powder into the medium box and turn on
+
                                            the water injection switch. The medium box will use a stirrer to stir and at the same time
+
                                            the outlet of bioreactor (switch c) will turn on to let ninety percent of the medium in the bioreactor flow out.
+
                                            When it is time to replace medium,
+
                                            turn on the switch a and switch b, at the same time, the switch c will be turned off.
+
                                        </p>
+
                                        <h5 class="boldh5">C. Downstream products purification and biosafety</h5>
+
                                        <img class="bigimg" src="https://static.igem.org/mediawiki/2018/7/7e/T--NCKU_Tainan--applied_design_downstream.png" alt="downstream">
+
                                        <p class="pcontent">We will dispose 30% of the used medium in the bioreactor one hour before new medium flows in.  
+
                                             Which means we let 30% of the used bacteria remain in the bioreactor.
+
                                            We designed this system to maintain a steady amount of bacteria in our bioreactor.
+
                                            The used medium will be sterilized and filtered in the downstream clean-up tank.
+
                                            At this step, we can harvest the bacteria by centrifuging and extracting the terminal product such as amino acids,
+
                                            proteins, medicine or bio-fuel. The expect the heat for sterilizing is from the waste heat of factories,
+
                                            the waste water can be recycled after removing toxins,
+
                                            and adjusting pH value and the energy the device require is green energy.
+
                                        </p>
+
                                    </ol>
+
                                </div>
+
                                <div id="Entrepreneurship">
+
                                    <h3>China Steel</h3>
+
                                    <img class="bigimg" src="https://static.igem.org/mediawiki/2018/a/a9/T--NCKU_Tainan--applied_design_chinasteel1.png" alt="china_steel">
+
                                    <p class="pcontent">Meeting with experts and stakeholders is important in shaping our project to fulfill
+
                                         the needs of our target user. China Steel Corporation is the largest integrated steel Manufacturer in Taiwan.
+
                                        Also, they had been adopting the algal bio-sequestration by cooperating with the research group at our university.
+
 
                                     </p>
 
                                     </p>
                                     <h5 class="boldh5">Process</h5>
+
                                     <p class="pcontent">The emission of CO<sub>2</sub> has been a serious problem for a
                                    <p class="pcontent">We were given the opportunity to meet with the senior executive of China Steel Corporation
+
                                         century that causes global warming and severe climate change. Even though many
                                         to gain invaluable insight for our research. The meeting commenced with our presentation.  
+
                                         ways have been tried to reduce it, the generation of CO<sub>2</sub> primarily
                                         During the presentation, we introduced our project, including the bioreactor design and the industrial model.
+
                                         from industry is still overwhelming. Therefore, scientists and governments have
                                         By listing out all the aspects we had considered, we would like to obtain advice
+
                                         been working hard to find solutions to tackle the problem.
                                         on the practical and social considerations involved in the application of our project in industry.
+
 
                                     </p>
 
                                     </p>
                                     <img class="bigimg" src="https://static.igem.org/mediawiki/2018/8/88/T--NCKU_Tainan--applied_design_chinasteel2.png" alt="china_steel">
+
                                     <li class="licontent">Control System</li>
                                     <h5 class="boldh5">Suggestion and question</h5>
+
                                    <div class="centerimg">
                                     <p class="pcontent">Will the high concentration of CO<sub>2</sub> retard growth of engineered bacteria?</p>
+
                                        <img class="smallimg" src="https://static.igem.org/mediawiki/2018/6/68/T--NCKU_Tainan--applied_design_overview.png"
                                    <p class="pcontent">Microalgae is reported resistant to SOx and NOx. Does <i>E. coli</i> survive under such conditions?</p>
+
                                            alt="overview">
                                     <p class="pcontent">The best condition for engineered <i>E. coli</i> to capture CO<sub>2</sub> is a lower CO<sub>2</sub>
+
                                     </div>
                                         concentration without too much SOx and NOx particles.  
+
                                    <p class="pcenter">Fig 2. Overview of the control system </p>
                                         However, we won’t be able to provide an ideal culture condition in Industrial application.  
+
                                     <p class="pcontent">There are many aspects we need to consider. First, we calculate
                                         After testing the tolerance of <i>E. coli</i>, we conclude that <i>E. coli</i> is possible to survive under that
+
                                        the emission velocity of CO<sub>2</sub> from the factory, as well as the medium
                                         kind of condition in factory and the only effects its expression.  
+
                                        exchange rate and the growth rate of <i>E. coli</i>. </p>
                                         It may not capture as much CO<sub>2</sub> as culture in the lab.
+
                                     <p class="pcontent">
 +
                                        Fig 1. is a process of whole <i>E. coli</i> carbon utilization that we design
 +
                                         for industrial application. We simplify it into three parts which shows in Fig
 +
                                         2. to explain more clearly. Three switches control three parts, named A, B and
 +
                                         C. Basically, the factory replaces the medium twice a day. At one hour before
 +
                                        replacing the medium, the user needs to turn on switch C to discharge ninety
 +
                                        percent of the medium. When it is time to replace the medium, switch C will be
 +
                                         turned off and switch B will be turned on to refill medium. When sufficient
 +
                                         medium is added, switch B will be turned off and switch A will be turned on to
 +
                                        let CO<sub>2</sub> in. Just like the animation showed on Fig 1..
 
                                     </p>
 
                                     </p>
                                     <p class="pcontent">It is important to define a specific commercial product that can be truly produced
+
                                     <p class="pcontent">Considering the cost, the growth time of our <i>E. coli</i> and
                                         since your user may consider its economic viability.
+
                                         the floor area, we optimized replace time of the medium, replace it every
                                         They stated that a product that can be widely used is better.  
+
                                         twelve hours and with 72 parallel bioreactors.
                                         At the same time, we should consider current GMO legislation if we want to commercialize those products.
+
                                         Next, we are going to have more detail description on three parts, which are <a
                                         The actual condition is not as ideal as in the laboratory,  
+
                                            class="link" href="#gas_and_flow_system">Gas preparation system and flow
                                         we should optimize the condition to maximize the carbon fixation ability of the microbes.
+
                                            system</a>,
 +
                                         <a class="link" href="#medium_preparation">Medium preparation</a>,
 +
                                         and <a class="link" href="#downstream">Downstream products purification and
 +
                                            biosafety</a>.
 
                                     </p>
 
                                     </p>
 +
 +
                                    <h5 class="boldh5" id="gas_and_flow_system">A. Gas preparation system and flow
 +
                                        system</h5>
 +
                                    <div class="centerimg">
 +
                                        <img class="smallimg" src="https://static.igem.org/mediawiki/2018/4/46/T--NCKU_Tainan--applied_design_gasflow.png"
 +
                                            alt="gasflow">
 +
                                    </div>
 +
                                    <p class="pcenter">Fig 3. Diagram of gas preparation system and flow system </p>
 +
                                    <p class="pcontent">According to IGCC (Integrate Gasification Combined Cycle) flow
 +
                                        diagram, the fuel is first converted to syngas which is a mixture of H<sub>2</sub>
 +
                                        and CO. The syngas is then burned in a combined cycle consisting of a gas
 +
                                        turbine and a steam turbine with a heat recovery steam generator (HRSG). After
 +
                                        CO<sub>2</sub> / H<sub>2</sub> separation, IGCC can reach the demand of CO<sub>2</sub>
 +
                                        purity including low SOx and NOx emission fraction of allowable limits of
 +
                                        bacteria. Finally, the produced flue gas could enter the pipeline leading to
 +
                                        the bioreactor. </p>
 +
                                    <p class="pcontent">
 +
                                        In <i>E. coli </i>utilization system, the air is pumped in to neutralize the
 +
                                        concentration of CO<sub>2</sub>. A controlled valve is used to control flow
 +
                                        rate and split distribution. When the switch a is turned on, the switch b will
 +
                                        be turned off, and vice versa. As for the CO<sub>2</sub> inlet and outlet, it
 +
                                        will maintain an open system of bioreactor. In other words, CO<sub>2</sub> will
 +
                                        enter continuously and cause some non-reacted CO<sub>2</sub> emitted.
 +
                                    </p>
 +
                                    <div class="centerimg">
 +
                                        <img class="smallimg" src="https://static.igem.org/mediawiki/2018/b/b8/T--NCKU_Tainan--IGCC.png"
 +
                                            alt="medium">
 +
                                    </div>
 +
                                    <p class="pcenter">Fig 4. IGCC process flow diagram. Source: Vattenfall. (2010)
 +
                                        <br></br>
 +
                                        Syngas has been treated by sulfur and nitrogen removal, as well as heavy metal
 +
                                        removal and cooling tank. Through IGCC process, purified CO<sub>2</sub> in flue
 +
                                        gas is allowable for <i>E. coli</i> CO<sub>2</sub> utilizing. </p>
 +
 +
 +
                                    <h5 class="boldh5" id="medium_preparation">B. Medium preparation</h5>
 +
                                    <div class="centerimg">
 +
                                        <img class="smallimg" src="https://static.igem.org/mediawiki/2018/f/f4/T--NCKU_Tainan--applied_design_medium.png"
 +
                                            alt="medium">
 +
                                    </div>
 +
                                    <p class="pcenter">Fig 5. Diagram of medium preparation</p>
 +
                                    <p class="pcontent">At this stage, we have two sections to consider, medium storage
 +
                                        and medium preparation before replacing time.</p>
 +
                                    <p class="pcontent">
 +
                                        The medium is composed of M9 salt and xylose. For storage, we will convert it
 +
                                        into powder with the required proportion. At one hour before replacing time,
 +
                                        pour the powder into the medium tank and turn on the water injection switch.
 +
                                        Turn on the stirrer of medium tank to have medium powder and water perfect
 +
                                        mixing. The outlet of bioreactor (switch c) will be turned on at the same time,
 +
                                        letting ninety percent of the medium in the bioreactor flow out . When the
 +
                                        medium have prepared well, turn on the switch a and switch b for replacing
 +
                                        medium in bioreactor, while the switch c will be turned off.
 +
                                    </p>
 +
                                    <p class="pcontent">We also consider the process of raw materials, especially
 +
                                        xylose, which is the key source of our pathway. Since xylose is one of the
 +
                                        products of agricultural waste degradation, we visited the <a class="link" href="#gas_and_flow_system">2018
 +
                                            Tainan Biotechnology and Green Energy Expo </a> to consulted with
 +
                                        researchers from National Energy Program-Phase II, whose projects was biofuel
 +
                                        and biodegradable plastic production via agricultural waste. They had developed
 +
                                        technique that degrade cellulose and semi-cellulose by ion solution.
 +
                                    </p>
 +
                                    <p class="pcontent">
 +
                                        Besides, we have opportunity to collaborate with <a class="link" href="https://2018.igem.org/Team:NCKU_Tainan/Collaborations#UESTC-China">UESTC-Chian
 +
                                            team </a>. They work for degrading straw with synthetic biology and convert
 +
                                        the product into bio-fuel. One of the product from straw degradation is xylose.
 +
                                        These techniques are eco-friendly and low-energy-require. Therefore, the
 +
                                        process development of xylose production will be a low-carbon-emission process.
 +
                                    </p>
 +
                                    <h5 class="boldh5" id="downstream">C. Downstream products purification and
 +
                                        biosafety</h5>
 +
                                    <div class="centerimg">
 +
                                        <img class="smallimg" src="https://static.igem.org/mediawiki/2018/7/7e/T--NCKU_Tainan--applied_design_downstream.png"
 +
                                            alt="downstream">
 +
                                    </div>
 +
                                    <p class="pcenter">Fig 6. Diagram of downstream process</p>
 +
                                    <p class="pcontent">We will discharge 90% of the used medium in the bioreactor one
 +
                                        hour before new medium flows in. Which means that we let 10% of the culture
 +
                                        remain in the bioreactor as seed culture. The effluent medium will be
 +
                                        sterilized and filtered in the downstream clean-up tank. At this step, we
 +
                                        harvest the bacteria and extracting the by-product such as amino acids,
 +
                                        proteins, medicine or bio-fuel. Different extracting process designed depends
 +
                                        on different by-product.
 +
                                    </p>
 +
                                    <p class="pcontent">Besides, we try to reuse the waste heat of factories for
 +
                                        sterilizing. The waste water can be recycled as well through removing toxins
 +
                                        and adjusting pH value the effluent could return to the medium tank. As for
 +
                                        energy require for this system, renewable energy helps us to reach near -zero
 +
                                        carbon emission process.
 +
                                    </p>
 +
                                    <p class="pcontent">Furthermore, we would like to set up membrane bioreactor (MBR)
 +
                                        system, which use a hollow filter membrane that is able to filter most of
 +
                                        bacteria in the sewage sludge. We use the system to concentrate the used medium
 +
                                        before extracting by-product. And the water went through the system is able to
 +
                                        recycle back to the medium tank.
 +
                                    </p>
 +
                                    <div class="centerimg">
 +
 +
                                        <img class="smallimg" src="https://static.igem.org/mediawiki/2018/c/c1/T--NCKU_Tainan--Product_MBR.gif"
 +
                                            alt="MBR">
 +
                                        <p class="pcenter">Fig 7. Picture of waste water recycle system </p>
 +
 +
                                        <img class="smallimg" src="https://static.igem.org/mediawiki/2018/1/11/T--NCKU_Tainan--Product_MBRreal.jpg"
 +
                                            alt="real MBR">
 +
                                        <p class="pcenter">Fig 8. Picture of MBR from KME technology Inc.</p>
 +
                                    </div>
 +
 +
                                </ol>
 +
                            </div>
 +
                            <div id="Application">
 +
                                <h3>Application : China Steel</h3>
 +
                                <img class="bigimg" src="https://static.igem.org/mediawiki/2018/a/a9/T--NCKU_Tainan--applied_design_chinasteel1.png"
 +
                                    alt="china_steel">
 +
                                <p class="pcenter">Fig 9. Picture of CSC interview</p>
 +
                                <p class="pcontent">Meeting with experts and stakeholders is important in shaping our
 +
                                    project to fulfill the needs of our target user.
 +
                                    China Steel Corporation is the largest integrated steel Manufacturer in Taiwan.
 +
                                    Also, they had been adopting the algal bio-sequestration by
 +
                                    cooperating with the research group at our university.
 +
 +
                                </p>
 +
                                <h5 class="boldh5">Process</h5>
 +
                                <p class="pcontent">We were given the opportunity to meet with the senior executive of
 +
                                    China Steel Corporation
 +
                                    to gain invaluable insight for our research. The meeting commenced with our
 +
                                    presentation.
 +
                                    During the presentation, we introduced our project, including the bioreactor design
 +
                                    and the industrial model.
 +
                                    By listing out all the aspects we had considered, we would like to obtain advice
 +
                                    on the practical and social considerations involved in the application of our
 +
                                    project in industry.
 +
                                </p>
 +
 +
                                <h5 class="boldh5">Suggestion and Question</h5>
 +
                                <p class="pcontent">Will the high concentration of CO<sub>2</sub> retard growth of
 +
                                    engineered bacteria?</p>
 +
                                <p class="pcontent">Microalgae is reported resistant to SOx and NOx. Does <i>E. coli</i>
 +
                                    survive under such conditions?</p>
 +
                                <p class="pcontent">The two questions above were the main concern of CSC. Basically,the
 +
                                    best condition for engineered <i>E. coli</i> to capture CO<sub>2</sub> is a lower
 +
                                    CO<sub>2</sub>
 +
                                    concentration without too much SOx and NOx particles.
 +
                                    However, we won’t be able to provide an ideal culture condition in Industrial
 +
                                    application.
 +
                                    After testing the tolerance of <i>E. coli</i>, we conclude that <i>E. coli</i> is
 +
                                    possible to survive under that
 +
                                    kind of condition in factory and the only effects its expression.
 +
                                    It may not capture as much CO<sub>2</sub> as culture in the lab.
 +
                                </p>
 +
                                <p class="pcontent">It is important to define a specific commercial product that can be
 +
                                    truly produced
 +
                                    since your user may consider its economic viability.
 +
                                    They stated that a product that can be widely used is better.
 +
                                    At the same time, we should consider current GMO legislation if we want to
 +
                                    commercialize those products.
 +
                                    The actual condition is not as ideal as in the laboratory,
 +
                                    we should optimize the condition to maximize the carbon fixation ability of the
 +
                                    microbes.
 +
                                </p>
 +
                                <h5 class="boldh5">Interview record</h5>
 +
                                <p class="pcontent"> The record can be separated into two parts.
 +
                                    One is about their feedback after interview, another one is our customer
 +
                                    investigate questions.
 +
                                    We use CSC represent China Steel.
 +
                                </p>
 +
                                <p class="pcontent"><a class="link" href="https://2018.igem.org/Team:NCKU_Tainan/Entrepreneurship#CSC">Click
 +
                                        to see complete interview</a></p>
 +
                            </div>
 +
 +
                            <div id="Business_Model">
 +
                                <h3>Business Model</h3>
 +
                                <p class="pcontent">The business model describes how an organization creates,
 +
                                    delivers, and captures value in an economic, social, cultural, or other
 +
                                    environment.
 +
                                    Therefore, we introduce this business model as the basis for assessing the
 +
                                    integrity and
 +
                                    effectiveness of our ideas to work with our industry and even national research.
 +
                                    First, we ask questions about this, and beyond the solution,
 +
                                    we also explain why we chose this question. Second, we analyzed future
 +
                                    developments,
 +
                                    including the advantages of using this approach.
 +
                                    Next, we introduce our plan to many relevant departments and discuss with the
 +
                                    national research.
 +
                                    I hope that this plan can be used to promote this plan in the future.
 +
                                </p>
 +
                                <h5 class="boldh5">Target issue</h5>
 +
                                <p class="pcontent">More and more people are now paying attention to the impact of CO<sub>2</sub>.
 +
                                    The trend of environmental degradation is gradually increasing.
 +
                                    Scientist and national worldwide contribute to capture those excessive CO<sub>2</sub>.
 +
                                    However, how to reduce carbon and use it has become a major problem today.
 +
                                    Challenges against carbon process are complicate. Except the technique and
 +
                                    implement problem,
 +
                                    social acceptability and policy are other key factors about carbon process
 +
                                    technology.
 +
                                </p>
 +
                                <p class="pcontent">In general, planting is a method of carbon process,
 +
                                    and the current use of green algae as a method of carbon utilization.
 +
                                    This year, we hope to combine synthetic biology with the most advanced
 +
                                    technologies.
 +
                                    We want to draw people's attention to the environment and reuse these
 +
                                    environmentally
 +
                                    stimulating projects.
 +
                                </p>
 +
                                <h5 class="boldh5"> Business model analysis </h5>
 +
                                <div class="centerimg">
 +
                                    <img style="width: 100%; height: auto;" src="https://static.igem.org/mediawiki/2018/4/48/T--NCKU_Tainan--applied_design_business_model.png"
 +
                                        alt="gasflow">
 
                                 </div>
 
                                 </div>
                                 <div id="Cost_Evaluation">
+
                                 <p class="pcontent"></p>
                                    <h3>Cost Evaluation</h3>
+
                                <h5 class="boldh5"></h5>
                                     <h5 class="boldh5">Volume</h5>
+
                            </div>
 +
 
 +
                            <div id="Cost_Evaluation">
 +
                                <h3>Cost Evaluation</h3>
 +
                                <p class="pcontent">The cost evaluation is always crucial for product being on the
 +
                                     market.
 +
                                    To compare our engineered <i>E. coli</i> to microalgae,
 +
                                    we calculate how much the cost it would be when capturing 1 ton of CO<sub>2</sub>.
 +
                                </p>
 +
                                <h5 class="boldh5">Volume</h5>
 +
                                <p class="pcenter" id="closep"> Table 1 Volume required in capturing 1 ton of CO<sub>2</sub></p>
 +
                                <div class="card card-body">
 +
                                    <table>
 +
                                        <tr>
 +
                                            <th colspan="1">Organisms</th>
 +
                                            <th colspan="1">CO<sub>2</sub>-fixation rate (mg/L*hr)</th>
 +
                                            <th colspan="1">Biomass concentration (gDCW/L)</th>
 +
                                            <th colspan="1">Specific CO<sub>2</sub>-fixation rate</th>
 +
                                            <th colspan="1">Volume requiredd (L)</th>
 +
                                        </tr>
 +
                                        <tr>
 +
                                            <td colspan="1">Engineered <i>E. coli</i></td>
 +
                                            <td colspan="1">19.6</td>
 +
                                            <td colspan="1">0.87</td>
 +
                                            <td colspan="1">22.5</td>
 +
                                            <td colspan="1">51000</td>
 +
                                        </tr>
 +
                                        <tr>
 +
                                            <td colspan="1">Chlorella vulgaris</td>
 +
                                            <td colspan="1">53</td>
 +
                                            <td colspan="1">5.7</td>
 +
                                            <td colspan="1">9.3</td>
 +
                                            <td colspan="1">19000</td>
 +
                                        </tr>
 +
                                    </table>
 +
                                    <br>
 +
                                    <div class="centerimg">
 +
                                        <img style="width: 70%; height: auto;" src="https://static.igem.org/mediawiki/2018/3/31/T--NCKU_Tainan--cost_volume.jpg"
 +
                                            alt="volume">
 +
                                    </div>
 +
                                    <p class="pcenter">Fig 6. Different volume required between micralgae and
 +
                                        engineered <i>E. coli</i> </p>
 +
                                    <p class="pcontent">
 +
                                        For capturing 1kg of CO<sub>2</sub> in one hour, 51000 L is required with
 +
                                        engineered <i>E. coli</i> carbon utilization. It seems that the difference
 +
                                        volume required for utilizing same amount of CO<sub>2</sub> is disadvantage of
 +
                                        <i>E. coli</i> carbon utilization system. At this situation, we have to look
 +
                                        into the design of the different bioreactor. For microalgae culture, it
 +
                                        requires a large surface area to increase light intensity. As usual, the height
 +
                                        of the microalgae culture pond cannot exceed 0.5 m. In other words, we have to
 +
                                        build a 7 m diameter culture pond with the volume of 19000L. In constrast,
 +
                                        engineered <i>E. coli</i> is not limited by light. The bioreactor of <i>E. coli</i>
 +
                                        can be built with any height in the indoor or outdoor. To scale up the
 +
                                        bioreactor, a 5.8 m diameted with 1.9 m height equals to 51000 L which has
 +
                                        lower floor area required.
 +
                                    </p>
 +
                                    <p class="pcontent">As a result,the bioreactor of engineered <i>E. coli</i> can
 +
                                        save more than 30% floor area compared with micoralgae culture pond. Take the
 +
                                        floor area of Taiwan as an example, we can build 94 billions of microalgae
 +
                                        culture pond to uilize 10% of annual emission with 12 operation hours. However,
 +
                                        1 over 3 of floor area will be save if we replace them with <i>E. coli</i>
 +
                                        bioreactor. <i>E. coli</i> bioreactor is more flexible on spacing using, and is
 +
                                        less sensitive to weather effect.
 +
                                    </p>
 +
 
 +
                                </div>
 +
                                <h5 class="boldh5">Cost</h5>
 +
                                <p class="pcontent">
 +
                                    The most expensive source in the medium of our engineered <i>E. coli</i> is xylose.
 +
                                    1 mole of xylose will capture 0.17 mole of CO<sub>2</sub>.
 +
                                    Therefore, we need 20.0535 kg of xylose while 1 kg of xylose costs 2 USD.
 +
                                    The total cost for our engineered <i>E. coli</i> requires 40.107 USD for capture 1
 +
                                    ton of CO<sub>2</sub>.
 +
                                    In contrast, microalgae needs 1000 liter to capture 250 g of CO<sub>2</sub>,
 +
                                    so it needs 4000 liter (about 4 tons) water while 1 ton costs 9.78 USD.
 +
                                    The total cost for microalgae is 39.13 USD.
 +
                                </p>
 +
                                <p class="pcenter" id="closep"> Table 2 Cost required in capturing 1 ton of CO<sub>2</sub>
 +
                                </p>
 +
                                <div class="card card-body">
 +
                                    <table>
 +
                                        <tr>
 +
                                            <th colspan="1">Item</th>
 +
                                            <th colspan="1">Microalgae</th>
 +
                                            <th colspan="1">Engineered <i>E. coli</i></th>
 +
                                        </tr>
 +
                                        <tr>
 +
                                            <td colspan="1">CO<sub>2</sub> utilizing rate</td>
 +
                                            <td colspan="1">250 g/m<sup>3</sup>/day</td>
 +
                                            <td colspan="1">19.6 mg/g (DRY cell weight)</td>
 +
                                        </tr>
 +
                                        <tr>
 +
                                            <td colspan="1">source required for 1 kg CO<sub>2</sub> utilization</td>
 +
                                            <td colspan="1">4 tons of water</td>
 +
                                            <td colspan="1">20.0535 kg xylose</td>
 +
                                        </tr>
 +
                                        <tr>
 +
                                            <td colspan="1">Cost</td>
 +
                                            <td colspan="1">39.13 USD</td>
 +
                                            <td colspan="1">40.107 USD</td>
 +
                                        </tr>
 +
                                        <tr>
 +
                                            <td colspan="1">Source</td>
 +
                                            <td colspan="1">NCKU Annan campus</td>
 +
                                            <td colspan="1">Adjust reference<sup>[1]</sup> and experiment</td>
 +
                                        </tr>
 +
                                    </table>
 +
                                    <p class="pcontent">We take two major industrial in Taiwan for example, which are
 +
                                        China Steel Corporation (CSC) and Taiwan Semiconductor Manufacturing Company
 +
                                        (TSMC). We had done some research on annual emission and calculated with our CO<sub>2</sub>
 +
                                        utilization efficiency. We also set the average carbon emission of small and
 +
                                        medium enterprise (SME) as a standard goal which was easier to reach.
 +
                                        Therefore, we can model the scale of <i>E. coli</i> carbon utilization system
 +
                                        working for 1 % CO<sub>2</sub> emission of different enterprise.
 +
                                    </p>
 +
                                    <p class="pcenter" id="closep"> Table 3 Cost of dealing with 1% amount of
 +
                                        industrial CO<sub>2</sub> emission </p>
 
                                     <div class="card card-body">
 
                                     <div class="card card-body">
 
                                         <table>
 
                                         <table>
 
                                             <tr>
 
                                             <tr>
                                                 <th colspan="1">Organisms</th>
+
                                                 <th colspan="1">Industrial</th>
                                                 <th colspan="1">CO<sub>2</sub>-fixation rate (mg/L*hr)</th>
+
                                                 <th colspan="1">annual emission</th>
                                                 <th colspan="1">Biomass concentration (gDCW/L)</th>
+
                                                <th colspan="1">1% of CO<sub>2</sub> emission per hour</th>
                                                 <th colspan="1">Specific CO<sub>2</sub>-fixation rate</th>
+
                                                 <th colspan="1">Number of required device</th>
                                                 <th colspan="1">Volume needed (L)</th>                                                      
+
                                                 <th colspan="1">Area required</th>
 +
                                                 <th colspan="1">Operation cost (USD)</th>
 +
 
 
                                             </tr>
 
                                             </tr>
 
                                             <tr>
 
                                             <tr>
                                                 <td colspan="1">Engineered <i>E. coli</i></td>
+
                                                 <td colspan="1">CSC</td>
                                                 <td colspan="1">19.6</td>
+
                                                <td colspan="1">3.30 millon tons </td>
                                                 <td colspan="1">0.87</td>
+
                                                 <td colspan="1">3750 kg</td>
                                                 <td colspan="1">22.5</td>
+
                                                 <td colspan="1">4555</td>
                                                 <td colspan="1">51000</td>
+
                                                 <td colspan="1">11.3875 hectare</td>
 +
                                                 <td colspan="1">150.4 thousands </td>
 
                                             </tr>
 
                                             </tr>
 
                                             <tr>
 
                                             <tr>
                                                 <td colspan="1">Chlorella vulgaris</td>
+
                                                 <td colspan="1">TSMC</td>
                                                 <td colspan="1">53</td>
+
                                                 <td colspan="1">0.387 millon tons</td>
                                                 <td colspan="1">5.7</td>
+
                                                 <td colspan="1">442 kg</td>
                                                 <td colspan="1">9.3</td>
+
                                                <td colspan="1">537</td>
                                                 <td colspan="1">19000</td>
+
                                                <td colspan="1">1.34 hectare</td>
 +
                                                 <td colspan="1">17.3 thousands </td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                 <td colspan="1">SME</td>
 +
                                                <td colspan="1">20 thousands tons</td>
 +
                                                <td colspan="1">23.529 kg</td>
 +
                                                <td colspan="1">29</td>
 +
                                                <td colspan="1">0.0713 hectare</td>
 +
                                                <td colspan="1">1 thousands </td>
 
                                             </tr>
 
                                             </tr>
 
                                         </table>
 
                                         </table>
 
                                     </div>
 
                                     </div>
                                     <h5 class="boldh5">Cost</h5>
+
                                     <p class="pcontent" id="closep"> We take two major industrial in Taiwan for
                                    <p class="pcontent">The cost evaluation is always crucial for product being on the market.
+
                                         example,
                                         To compare our engineered <i>E. coli</i> to microalgae,  
+
                                         which are China Steel Corporation (CSC) and Taiwan Semiconductor Manufacturing
                                         we calculate how much the cost it would be when capturing 1000 kilograms CO<sub>2</sub>.  
+
                                        Company (TSMC). We had research on annual emission and calculate with our
                                         The most expensive source in the medium of our engineered <i>E. coli</i> is xylose.
+
                                        CO<sub>2</sub> utilization efficiency. Therefore,
                                         1 mole xylose will capture 0.17 mole CO<sub>2</sub>,
+
                                         we can model the scale of <i>E. coli</i> carbon utilization system working
                                        so it would need 20.0535 kilograms xylose and 1 kilogram xylose is cost 2 USD.
+
                                         for 1 % of industrial CO<sub>2</sub> emission.
                                        The total cost for our engineered <i>E. coli</i> is require 40.107 USD for capture 1 kilogram CO<sub>2</sub>.
+
                                        In contrast, microalgae need 1000 liter to capture 250 gram CO<sub>2</sub>,
+
                                        so it need 4000 liter (about 4 Tons) water and 1 tons is cost 9.78 USD (300NT).
+
                                        The total cost for microalgae is require 39.13 USD.
+
 
                                     </p>
 
                                     </p>
 +
                                    <br>
 +
                                    <h5 class="boldh5">Energy consumption</h5>
 +
                                    <p class="pcontent">Our bioreactor applies in the industry,
 +
                                        including the magnetic stirrer, pump and controller.
 +
                                        It will cost 3313 USD every month if the price of industrial electricity
 +
                                        is 0.063 USD per kWh.
 +
                                    </p>
 +
                                    <br>
 +
                                    <p class="pcenter"> Table 4 Energy consumption of different items of device </p>
 
                                     <div class="card card-body">
 
                                     <div class="card card-body">
 
                                         <table>
 
                                         <table>
 
                                             <tr>
 
                                             <tr>
                                                 <th colspan="1">Item</th>
+
                                                 <th colspan="1"></th>
                                                 <th colspan="1">Microalgae</th>
+
                                                 <th colspan="1">Magnetic stirrer</th>
                                                 <th colspan="1">Engineered <i>E. coli</i></th>                                          
+
                                                 <th colspan="1">Pump</th>
 +
                                                <th colspan="1">Controller</th>
 +
 
 
                                             </tr>
 
                                             </tr>
 
                                             <tr>
 
                                             <tr>
                                                 <td colspan="1">CO2 utilizing rate</td>
+
                                                 <td colspan="1">hp</td>
                                                 <td colspan="1">250g/m3/day</td>
+
                                                 <td colspan="1">2 </td>
                                                 <td colspan="1">19.6 mg/g (DRY cell weight)</td>
+
                                                 <td colspan="1">none</td>
 +
                                                <td colspan="1">100</td>
 
                                             </tr>
 
                                             </tr>
 
                                             <tr>
 
                                             <tr>
                                                 <td colspan="1">source required for 1kg CO2 utilization</td>
+
                                                 <td colspan="1">kW</td>
                                                 <td colspan="1">4 tons of water</td>
+
                                                 <td colspan="1">1.47</td>
                                                 <td colspan="1">20.0535kg xylose</td>
+
                                                 <td colspan="1">0.1</td>
 +
                                                <td colspan="1">73.5</td>
 +
 
 
                                             </tr>
 
                                             </tr>
 
                                             <tr>
 
                                             <tr>
                                                 <td colspan="1">Cost</td>
+
                                                 <td colspan="1">kWh</td>
                                                 <td colspan="1">39.13USD</td>
+
                                                 <td colspan="1">1058.4</td>
                                                 <td colspan="1">40.107USD</td>
+
                                                 <td colspan="1">72</td>
 +
                                                <td colspan="1">52920</td>
 +
 
 
                                             </tr>
 
                                             </tr>
 
                                             <tr>
 
                                             <tr>
                                                 <td colspan="1">Source</td>
+
                                                 <td colspan="1">Price (USD)</td>
                                                 <td colspan="1">NCKU Annan campus</td>
+
                                                 <td colspan="1">67.03</td>
                                                 <td colspan="1">Adjust reference<sup>[1]</sup> and experiment</td>
+
                                                 <td colspan="1">4.56</td>
 +
                                                <td colspan="1">3351.6</td>
 +
 
 
                                             </tr>
 
                                             </tr>
 
                                         </table>
 
                                         </table>
                                         <p class="pcenter">Table 1. According to our research of mircoalgae culture in AN-nan campus,
+
                                         <p class="pcontent hpword">* hp = horse power</p>
                                            we list the data of its cost and CO<sub>2</sub> utilization rate to help us optimize our project.
+
                                        <p class="pcontent hpword">* kW = kilowatt </p>
                                         </p>
+
                                         <p class="pcontent hpword">* kWh = kilowatt per hour in one month</p>
 
                                     </div>
 
                                     </div>
 
                                 </div>
 
                                 </div>
 +
 
                                 <div id="Future_Work">
 
                                 <div id="Future_Work">
 
                                     <h3>Future Work</h3>
 
                                     <h3>Future Work</h3>
                                     <p class="pcontent">For industrial application design, we focus on manufacturing valuable products using pyruvate and  
+
                                     <p class="pcontent">For industrial application design, we focus on manufacturing
                                         the linkage between our engineered <i>E. coli</i> between factory.  
+
                                        valuable products using pyruvate and
                                         We have designed a device containing our recombinant <i>E. coli</i>,  
+
                                         the linkage between our engineered <i>E. coli</i> between factory.
                                         constructed a system which links with factory.  
+
                                         We have designed a device containing our recombinant <i>E. coli</i>,
                                         However, we still look forward to more modifications of our biological pathway and system.
+
                                         constructed a system which links with factory.
 +
                                         However, we still look forward to more modifications of our biological pathway
 +
                                        and system.
 
                                     </p>
 
                                     </p>
                                     <p class="pcontent">The most important intermediate product, pyruvate,  
+
                                     <p class="pcontent">The most important intermediate product, pyruvate,
                                         is also possible to be converted to other compounds by <i>E. coli</i> native enzymes or constructed enzymes  
+
                                         is also possible to be converted to other compounds by <i>E. coli</i> native
                                         which is clone into <i>E. coli</i> from other organism.  
+
                                        enzymes or constructed enzymes
                                         For future work of pyruvate, we expect that it is predicable to produce amino acid, fatty acid,  
+
                                         which is clone into <i>E. coli</i> from other organism.
                                         biofuel and even biodegradable plastic. Pyruvate is crucial for central metabolism pathway,  
+
                                         For future work of pyruvate, we expect that it is predicable to produce amino
                                         the TCA cycle, of most organism and has the potential to become vary biochemistry compounds.  
+
                                        acid, fatty acid,
 +
                                         biofuel and even biodegradable plastic. Pyruvate is crucial for central
 +
                                        metabolism pathway,
 +
                                         the TCA cycle, of most organism and has the potential to become vary
 +
                                        biochemistry compounds.
 
                                     </p>
 
                                     </p>
                                     <p class="pcontent">We set our first future goal at producing glutamine,  
+
                                     <p class="pcontent">We set our first future goal at producing glutamine,
                                         an essential amino acid for human and some animals. We can simply purify it as a nutrient supply.  
+
                                         an essential amino acid for human and some animals. We can simply purify it as
                                         Not only for medical and daily usage for people, but also for animal husbandry.  
+
                                        a nutrient supply.
                                         Furthermore, glutamine can easily convert to other amino acid, and potentially produce other proteins.
+
                                         Not only for medical and daily usage for people, but also for animal husbandry.
 +
                                         Furthermore, glutamine can easily convert to other amino acid, and potentially
 +
                                        produce other proteins.
 
                                     </p>
 
                                     </p>
                                     <p class="pcontent">Furthermore, researchers have successfully constructed pathways produced cellulose and  
+
                                    <div class="centerimg">
                                         Poly 3-Hydroxybutyrate-co-3-Hydroxyvalerate through the TCA cycle.  
+
                                        <img style="width: 70%; height: auto;" src="https://static.igem.org/mediawiki/2018/1/15/T--NCKU_Tainan--applied_design_future_work.png"
                                         We are confident of manufacturing more valuable and diverse products from pyruvate.
+
                                            alt="gasflow">
 +
                                    </div>
 +
                                    <p class="pcenter">Fig 10. Diagram of pyruvate in central carbon metabolism </p>
 +
                                     <p class="pcontent">Furthermore, researchers have successfully constructed pathways
 +
                                        produced cellulose and
 +
                                         Poly 3-Hydroxybutyrate-co-3-Hydroxyvalerate through the TCA cycle.
 +
                                         We are confident of manufacturing more valuable and diverse products from
 +
                                        pyruvate.
 
                                     </p>
 
                                     </p>
                                     <p class="pcontent">WAs for the device we designed, we expect that it is possible to modify our device for power  
+
                                     <p class="pcontent">WAs for the device we designed, we expect that it is possible
                                         generator and other industry. Our device can utilize CO<sub>2</sub> and convert it into various valuable products.  
+
                                        to modify our device for power
                                         With our system, companies can not only reduce CO<sub>2</sub> emission but also make profits.
+
                                         generator and other industry. Our device can utilize CO<sub>2</sub> and convert
 +
                                        it into various valuable products.
 +
                                         With our system, companies can not only reduce CO<sub>2</sub> emission but also
 +
                                        make profits.
 
                                     </p>
 
                                     </p>
 
                                 </div>
 
                                 </div>
 +
 
                                 <div id="Reference">
 
                                 <div id="Reference">
                                     <h3>Reference</h3>
+
                                     <h3>References</h3>
 
                                     <ol>
 
                                     <ol>
                                         <li class="smallp">Fuyu G, Guoxia L, Xiaoyun Z, Jie Z, Zhen C and Yin L. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Gong et al. Biotechnology for Biofuels, 2015, 8:86.</li>
+
                                         <li class="smallp">G. Fuyu, L. Guoxia, Z. Xiaoyun, Z. Jie, C. Zhen, L. Yin,
 +
                                            Quantitative analysis of an engineered CO<sub>2</sub>-fixing Escherichia
 +
                                            coli reveals great potential of heterotrophic CO<sub>2</sub> fixation. Gong
 +
                                            et al. Biotechnology for Biofuels, 2015, 8:86.</li>
 +
                                        <li class="smallp">
 +
                                            張嘉修、陳俊延、林志生、楊勝仲、周德珍、郭子禎、顏宏偉、李澤民 (2015), 二氧化碳再利用─微藻養殖, 科學發展 2015 年 6 月│ 510
 +
                                            期 </li>
 +
                                        <li class="smallp"> L. Irlam, GLOBAL COSTS OF CARBON CAPTURE AND
 +
                                            STORAGE, Global CCS Institute, Senior Adviser Policy & Economics,
 +
                                            Asia-Pacific Region </li>
 +
                                        <li class="smallp">J. H. Park, J. E. Oh, K. H. Lee, J. Y. Kim, S. Y. Lee.
 +
                                            Rational Design of Escherichia coli for L‑Isoleucine Production. [ACS Synth
 +
                                            Biol.](https://www.ncbi.nlm.nih.gov/pubmed/23656230#) 2012</li>
 +
                                        <li class="smallp">M. KUNDAK, L. LAZI], J. RNKO. CO<sub>2</sub> EMISSIONS IN
 +
                                            THE STEEL INDUSTRY. METALURGIJA 48, 2009</li>
 +
                                        <li class="smallp">V. N. Kalpana, D. S. Prabhu, S. Vinodhini, Devirajeswari V.
 +
                                            Biomedical waste and its management. Journal of Chemical and Pharmaceutical
 +
                                            Research, 2016</li>
 +
                                        <li class="smallp">Q. Ma, Q. Zhang, Q. Xu, C. Zhang, Y. Li, X. Fan, X. Xie, N.
 +
                                            Chen. Systems metabolic engineering strategies for the production of amino
 +
                                            acids. Synthetic and Systems Biotechnology 2 (2017)</li>
 +
                                        <li class="smallp">J. B. Magnus, D. Hollwedel, M. Oldiges, R. Takors.
 +
                                            Monitoring and Modeling of the Reaction Dynamics in the Valine/Leucine
 +
                                            Synthesis Pathway in Corynebacterium glutamicum. Biotechnol. Prog. 2006</li>
 +
                                        <li class="smallp">I. Kusumoto. Industrial Production of L-Glutamine. American
 +
                                            Society for Nutritional Sciences, 2001</li>
 +
                                        <li class="smallp">Q. Chen, Q. Wang, G. Wei, Q. Liang, Q. Qi. Production
 +
                                            inEscherichia coli of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with
 +
                                            Differing Monomer Compositions from Unrelated Carbon Sources. APPLIED AND
 +
                                            ENVIRONMENTAL MICROBIOLOGY, 2011</li>
 
                                     </ol>
 
                                     </ol>
 
                                 </div>
 
                                 </div>
Line 232: Line 593:
 
             </div>
 
             </div>
 
         </div>
 
         </div>
        <script>
+
    </div>
         $(document).ready(function() {
+
 
          $(window).scroll(function() {
+
    <script>
            var scrollPercentage = (document.documentElement.scrollTop + document.body.scrollTop) / (document.documentElement.scrollHeight - document.documentElement.clientHeight);    
+
         $(document).ready(function () {
            if(scrollPercentage >= 0.95) {
+
            $(window).scroll(function () {
              var position = $("#sidelist").position();
+
                var scrollPercentage = (document.documentElement.scrollTop + document.body.scrollTop) /
              if(position == undefined){}
+
                    (document.documentElement.scrollHeight - document.documentElement.clientHeight);
              else{
+
                if (scrollPercentage >= 0.95) {
                $('#sidelist').css({"position": "fixed", "top": "105px"});
+
                    var position = $("#sidelist").position();
              }
+
                    if (position == undefined) {} else {
            } else {
+
                        $('#sidelist').css({
              if ($(this).scrollTop() >= 80) {
+
                            "position": "fixed",
                var position = $("#sidelist").position();
+
                            "top": "105px"
                  if(position == undefined){}
+
                        });
                  else{
+
                    }
                    $('#sidelist').css({"position": "fixed", "top": "145px", "margin-top": "0px"});
+
                } else {
                  }
+
                    if ($(this).scrollTop() >= 500) {
              } else {
+
                        var position = $("#sidelist").position();
                $('#sidelist').removeAttr('style');
+
                        if (position == undefined) {} else {
              }
+
                            $('#sidelist').css({
            }
+
                                "position": "fixed",
          });
+
                                "top": "145px",
          $(function(){
+
                                "margin-top": "0px"
            $('i.fa-arrow-up').click(function(){
+
                            });
            $('html, body').animate({scrollTop:0},600);
+
                        }
              return false;
+
                    } else {
 +
                        $('#sidelist').removeAttr('style');
 +
                    }
 +
                }
 +
            });
 +
            $(function () {
 +
                $('i.fa-arrow-up').click(function () {
 +
                    $('html, body').animate({
 +
                        scrollTop: 0
 +
                    }, 600);
 +
                    return false;
 +
                });
 
             });
 
             });
          });
 
 
         });
 
         });
        </script>
+
    </script>
        <script src="https://2018.igem.org/Team:NCKU_Tainan/js/frame/T--NCKU_Tainan--jquery-1_12_4_min_js?action=raw&amp;ctype=text/javascript"></script>
+
    <script src="https://2018.igem.org/Team:NCKU_Tainan/js/frame/T--NCKU_Tainan--jquery-1_12_4_min_js?action=raw&amp;ctype=text/javascript"></script>
        <script src="https://2018.igem.org/Template:NCKU_Tainan/js/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
+
    <script src="https://2018.igem.org/Template:NCKU_Tainan/js/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
    </body>
+
</body>
 +
 
 
</html>
 
</html>
 
{{NCKU_Tainan/footer}}
 
{{NCKU_Tainan/footer}}

Latest revision as of 16:19, 1 November 2018

Product Design

Ideas Come True
Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)