Difference between revisions of "Team:NCKU Tainan/Applied Design"

 
(67 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
{{NCKU_Tainan/header}} {{NCKU_Tainan/navbar}} {{NCKU_Tainan/style}}
 
{{NCKU_Tainan/header}} {{NCKU_Tainan/navbar}} {{NCKU_Tainan/style}}
 
<html>
 
<html>
    <head>
+
 
        <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/applied_design?action=raw&ctype=text/css">
+
<head>
    </head>
+
    <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/applied_design?action=raw&ctype=text/css">
    <body data-spy="scroll" data-target=".navbar-example">
+
</head>
        <div class="container content">
+
 
         <h1 class="head">Product Design</h1>
+
<body data-spy="scroll" data-target=".navbar-example">
             <div class="navbar-example">
+
    <div class="container content">
                <div class="row">
+
         <div class="headstyle">
                    <div class="col-2 side">      
+
            <h1 class="head">Product Design</h1>
                        <div id="sidelist" class="list-group">
+
        </div>
                            <a class="list-group-item list-group-item-action" href="#Product_Design">Product Design</a>
+
        <div class="righttitle">
                            <a class="list-group-item list-group-item-action" href="#Entrepreneurship">Entrepreneurship</a>
+
             <h6 class="subtitle">Ideas Come True</h6>
                            <a class="list-group-item list-group-item-action" href="#Cost_Evaluation">Cost Evaluation</a>
+
        </div>
                            <a class="list-group-item list-group-item-action" href="#Future_Work">Future Work</a>
+
        <div class="navbar-example">
                            <a class="list-group-item list-group-item-action" href="#Reference">Reference</a>
+
            <div class="row">
                            <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x" aria-hidden="true"></i></a>
+
                <div class="col-2 side">
                        </div>
+
                    <div id="sidelist" class="list-group">
 +
                        <a class="list-group-item list-group-item-action" href="#Product_Design">Product Design</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Application">Application</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Business_Model">Business Model</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Cost_Evaluation">Cost Evaluation</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Future_Work">Future Work</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Reference">References</a>
 +
                        <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x"
 +
                                aria-hidden="true"></i></a>
 
                     </div>
 
                     </div>
                    <div class="col-10">
+
                </div>
                        <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
+
                <div class="col-10">
                            <div class="container">
+
                    <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
                                <div id="Product_Design">
+
                        <div class="container">
                                    <h3>Product Design</h3>
+
                            <div id="Product_Design">
                                    <img class="bigimg" src="https://static.igem.org/mediawiki/2018/2/26/T--NCKU_Tainan--applied_design_product.gif" alt="product design">
+
                                <h3>Product Design</h3>
<p class="pcenter"> Fig.1 Flow chart of E. coli carbon utilization system </p>                                  
+
                                <img class="bigimg" src="https://static.igem.org/mediawiki/2018/2/26/T--NCKU_Tainan--applied_design_product.gif"
                                      <ol>
+
                                    alt="product design">
                                        <li class="licontent">Overview</li>
+
                                <p class="pcenter">Fig 1. Flow chart of <i>E. coli</i> carbon utilization system </p>
                                        <p class="pcontent">The emission of carbon dioxide (CO<sub>2</sub>) is a serious problem
+
                                <ol>
                                            the world has faced for a century. Although existing methods can reduce carbon dioxide,
+
                                    <li class="licontent">Overview</li>
                                            it still can't load massive emission of CO<sub>2</sub> from the industry.
+
                                    <p class="pcontent">In this project, we, the NCKU Tainan Team, have proposed an
                                            Thus, our team uses <i>E. coli</i> to capture CO<sub>2</sub>,  
+
                                        alternative way to reduce the emission of Carbon dioxide (CO<sub>2</sub>).
                                            providing another choice in excessive CO<sub>2</sub> emission problems.
+
                                        Referring to the opinions and feedbacks from many industry experts and
                                        </p>
+
                                        professors, we design a new factory flow to capture CO<sub>2</sub> by <i>E.
                                        <p class="pcontent">In addition, we trace back to the CO<sub>2</sub> emission source.  
+
                                            coli</i> Not only our device meets the specs to commercialize, but it also
                                            Factories are the main field to produce large amounts of CO<sub>2</sub>,
+
                                        demonstrates high cost performance.
                                            so we designed a complete factory flow chart. We received lots of suggestions provided by industry,  
+
                                    </p>
                                            professors and experts in different specialties.
+
                                    <p class="pcontent">The emission of CO<sub>2</sub> has been a serious problem for a
                                            After considering all cost advantages, we have built a device which has commercial specifications.
+
                                        century that causes global warming and severe climate change. Even though many
                                        </p>
+
                                        ways have been tried to reduce it, the generation of CO<sub>2</sub> primarily
                                        <li class="licontent">Control System</li>
+
                                        from industry is still overwhelming. Therefore, scientists and governments have
                                         <img class="bigimg" src="https://static.igem.org/mediawiki/2018/6/68/T--NCKU_Tainan--applied_design_overview.png" alt="overview">
+
                                        been working hard to find solutions to tackle the problem.
                                        <p class="pcenter">Fig. 2 Overview of the control system </p>                                
+
                                    </p>
                                        <p class="pcontent">There are many aspects we need to consider. First, we consider the emission velocity of carbon dioxide from the factory, the medium                 exchange rate and the growth time of our <i>E. coli</i>.  
+
                                    <li class="licontent">Control System</li>
We design a process. From Fig. 1 and Fig. 2, there will be three parts in <i>E. coli</i> carbon utilization system. Three switches control three parts, named A, B and C. Basically, the factory needs to replace the medium twice a day. At one hour before replacing the medium, the user needs to turn on switch C to discharge ninety percent of the medium. When it is time to replace the medium, switch C will be turned off and switch B will be turned on to refill medium. When sufficient medium is added, switch B will be turned off and switch A will be turned on to let CO<sub>2</sub> in. Just like the animation showed on Fig. 1.
+
                                    <div class="centerimg">
 +
                                         <img class="smallimg" src="https://static.igem.org/mediawiki/2018/6/68/T--NCKU_Tainan--applied_design_overview.png"
 +
                                            alt="overview">
 +
                                    </div>
 +
                                    <p class="pcenter">Fig 2. Overview of the control system </p>
 +
                                    <p class="pcontent">There are many aspects we need to consider. First, we calculate
 +
                                        the emission velocity of CO<sub>2</sub> from the factory, as well as the medium
 +
                                        exchange rate and the growth rate of <i>E. coli</i>. </p>
 +
                                    <p class="pcontent">
 +
                                        Fig 1. is a process of whole <i>E. coli</i> carbon utilization that we design
 +
                                        for industrial application. We simplify it into three parts which shows in Fig
 +
                                        2. to explain more clearly. Three switches control three parts, named A, B and
 +
                                        C. Basically, the factory replaces the medium twice a day. At one hour before
 +
                                        replacing the medium, the user needs to turn on switch C to discharge ninety
 +
                                        percent of the medium. When it is time to replace the medium, switch C will be
 +
                                        turned off and switch B will be turned on to refill medium. When sufficient
 +
                                        medium is added, switch B will be turned off and switch A will be turned on to
 +
                                        let CO<sub>2</sub> in. Just like the animation showed on Fig 1..
 +
                                    </p>
 +
                                    <p class="pcontent">Considering the cost, the growth time of our <i>E. coli</i> and
 +
                                        the floor area, we optimized replace time of the medium, replace it every
 +
                                        twelve hours and with 72 parallel bioreactors.
 +
                                        Next, we are going to have more detail description on three parts, which are <a
 +
                                            class="link" href="#gas_and_flow_system">Gas preparation system and flow
 +
                                            system</a>,
 +
                                        <a class="link" href="#medium_preparation">Medium preparation</a>,
 +
                                        and <a class="link" href="#downstream">Downstream products purification and
 +
                                            biosafety</a>.
 +
                                    </p>
  
                                        <p class="pcontent">In order to reduce the cost, on the growth time of our <i>E. coli</i> and floor area,
+
                                    <h5 class="boldh5" id="gas_and_flow_system">A. Gas preparation system and flow
                                            we decided to replace the medium every twelve hours and use 72 parallel bioreactors.
+
                                         system</h5>
                                            Next, we are going to have more detail description on three parts, which are gas preparation system and flow system, Medium preparation, and Downstream products purification and biosafety.
+
                                    <div class="centerimg">
                                         </p>
+
                                         <img class="smallimg" src="https://static.igem.org/mediawiki/2018/4/46/T--NCKU_Tainan--applied_design_gasflow.png"
                                     
+
                                            alt="gasflow">
                                        <h5 class="boldh5">A. Gas preparation system and flow system</h5>
+
                                    </div>
                                         <img class="bigimg" src="https://static.igem.org/mediawiki/2018/4/46/T--NCKU_Tainan--applied_design_gasflow.png" alt="gasflow">
+
                                    <p class="pcenter">Fig 3. Diagram of gas preparation system and flow system </p>
                                        <p class="pcenter"> Fig. 3 Diagram of gas preparation system and flow system </p>
+
                                    <p class="pcontent">According to IGCC (Integrate Gasification Combined Cycle) flow
                                        <p class="pcontent">According to IGCC (Integrate Gasification Combined Cycle) flow chart, the syngas has been treated by sulfur and nitrogen removal, as                  well as heavy metal removal and cooling tank. Then it produces flue gas that enters the pipeline leading to the bioreactor. Besides, we pump the air to neutralize the concentration                   of CO<sub>2</sub>. Control flow rate and split distribution with controlled valve. When the switch a is turned on, the switch b will be turned off, and vice versa. As for the CO<sub>2</sub> inlet and outlet, it will maintain an open system of bioreactor. In other words, CO<sub>2</sub> will enters continuously and there will still cause some non-reacted CO<sub>2</sub> emitted.
+
                                        diagram, the fuel is first converted to syngas which is a mixture of H<sub>2</sub>
                                        </p>
+
                                        and CO. The syngas is then burned in a combined cycle consisting of a gas
                                        <h5 class="boldh5">B. Medium preparation</h5>
+
                                        turbine and a steam turbine with a heat recovery steam generator (HRSG). After
                                         <img class="bigimg" src="https://static.igem.org/mediawiki/2018/f/f4/T--NCKU_Tainan--applied_design_medium.png" alt="medium">
+
                                        CO<sub>2</sub> / H<sub>2</sub> separation, IGCC can reach the demand of CO<sub>2</sub>
                                        <p class="pcenter"> Fig. 4 Diagram of medium preparation</p>
+
                                        purity including low SOx and NOx emission fraction of allowable limits of
                                        <p class="pcontent">At this stage we will match the proportion of m9 salt and xylose and change it into powder.  
+
                                        bacteria. Finally, the produced flue gas could enter the pipeline leading to
                                            At one hour before replacing the medium, pour the powder into the medium box and turn on
+
                                        the bioreactor. </p>
                                            the water injection switch. The medium box will use a stirrer to stir and at the same time
+
                                    <p class="pcontent">
                                            the outlet of bioreactor (switch c) will turn on to let ninety percent of the medium in the bioreactor flow out.  
+
                                        In <i>E. coli </i>utilization system, the air is pumped in to neutralize the
                                            When it is time to replace medium,
+
                                        concentration of CO<sub>2</sub>. A controlled valve is used to control flow
                                            turn on the switch a and switch b, at the same time, the switch c will be turned off.
+
                                        rate and split distribution. When the switch a is turned on, the switch b will
                                        </p>
+
                                        be turned off, and vice versa. As for the CO<sub>2</sub> inlet and outlet, it
                                        <h5 class="boldh5">C. Downstream products purification and biosafety</h5>
+
                                        will maintain an open system of bioreactor. In other words, CO<sub>2</sub> will
                                        <img class="bigimg" src="https://static.igem.org/mediawiki/2018/7/7e/T--NCKU_Tainan--applied_design_downstream.png" alt="downstream">
+
                                        enter continuously and cause some non-reacted CO<sub>2</sub> emitted.
                                         <p class="pcenter"> Fig. 5 Diagram of downstream process</p>
+
                                    </p>
                                         <p class="pcontent">We will dispose 30% of the used medium in the bioreactor one hour before new medium flows in.
+
                                    <div class="centerimg">
                                            Which means we let 30% of the used bacteria remain in the bioreactor.
+
                                         <img class="smallimg" src="https://static.igem.org/mediawiki/2018/b/b8/T--NCKU_Tainan--IGCC.png"
                                            We designed this system to maintain a steady amount of bacteria in our bioreactor.
+
                                            alt="medium">
                                            The used medium will be sterilized and filtered in the downstream clean-up tank.
+
                                    </div>
                                            At this step, we can harvest the bacteria by centrifuging and extracting the terminal product such as amino acids,
+
                                    <p class="pcenter">Fig 4. IGCC process flow diagram. Source: Vattenfall. (2010)
                                            proteins, medicine or bio-fuel. The expect the heat for sterilizing is from the waste heat of factories,  
+
                                         <br></br>
                                            the waste water can be recycled after removing toxins,
+
                                         Syngas has been treated by sulfur and nitrogen removal, as well as heavy metal
                                            and adjusting pH value and the energy the device require is green energy.
+
                                        removal and cooling tank. Through IGCC process, purified CO<sub>2</sub> in flue
                                        </p>
+
                                        gas is allowable for <i>E. coli</i> CO<sub>2</sub> utilizing. </p>
                                    </ol>
+
                                </div>
+
                                <div id="Entrepreneurship">
+
                                    <h3>Entrepreneurship : China Steel</h3>
+
                                    <img class="bigimg" src="https://static.igem.org/mediawiki/2018/a/a9/T--NCKU_Tainan--applied_design_chinasteel1.png" alt="china_steel">
+
                                    <p class="pcenter">Fig.6 Picture of CSC interview</p>
+
                                    <p class="pcontent">Meeting with experts and stakeholders is important in shaping our project to fulfill the needs of our target user.
+
                                    China Steel Corporation is the largest integrated steel Manufacturer in Taiwan. Also, they had been adopting the algal bio-sequestration by
+
                                    cooperating with the research group at our university. Click here to know more in Entrepreneurship:Process, Suggestion and question and
+
                                    Interview record.
+
  
 +
 +
                                    <h5 class="boldh5" id="medium_preparation">B. Medium preparation</h5>
 +
                                    <div class="centerimg">
 +
                                        <img class="smallimg" src="https://static.igem.org/mediawiki/2018/f/f4/T--NCKU_Tainan--applied_design_medium.png"
 +
                                            alt="medium">
 +
                                    </div>
 +
                                    <p class="pcenter">Fig 5. Diagram of medium preparation</p>
 +
                                    <p class="pcontent">At this stage, we have two sections to consider, medium storage
 +
                                        and medium preparation before replacing time.</p>
 +
                                    <p class="pcontent">
 +
                                        The medium is composed of M9 salt and xylose. For storage, we will convert it
 +
                                        into powder with the required proportion. At one hour before replacing time,
 +
                                        pour the powder into the medium tank and turn on the water injection switch.
 +
                                        Turn on the stirrer of medium tank to have medium powder and water perfect
 +
                                        mixing. The outlet of bioreactor (switch c) will be turned on at the same time,
 +
                                        letting ninety percent of the medium in the bioreactor flow out . When the
 +
                                        medium have prepared well, turn on the switch a and switch b for replacing
 +
                                        medium in bioreactor, while the switch c will be turned off.
 
                                     </p>
 
                                     </p>
                                    <h5 class="boldh5">Process</h5>
+
                                     <p class="pcontent">We also consider the process of raw materials, especially
                                     <p class="pcontent">We were given the opportunity to meet with the senior executive of China Steel Corporation
+
                                         xylose, which is the key source of our pathway. Since xylose is one of the
                                         to gain invaluable insight for our research. The meeting commenced with our presentation.  
+
                                         products of agricultural waste degradation, we visited the <a class="link" href="#gas_and_flow_system">2018
                                         During the presentation, we introduced our project, including the bioreactor design and the industrial model.
+
                                            Tainan Biotechnology and Green Energy Expo </a> to consulted with
                                         By listing out all the aspects we had considered, we would like to obtain advice
+
                                         researchers from National Energy Program-Phase II, whose projects was biofuel
                                         on the practical and social considerations involved in the application of our project in industry.
+
                                         and biodegradable plastic production via agricultural waste. They had developed
 +
                                        technique that degrade cellulose and semi-cellulose by ion solution.
 
                                     </p>
 
                                     </p>
                                 
+
                                     <p class="pcontent">
                                     <h5 class="boldh5">Suggestion and question</h5>
+
                                        Besides, we have opportunity to collaborate with <a class="link" href="https://2018.igem.org/Team:NCKU_Tainan/Collaborations#UESTC-China">UESTC-Chian
                                    <p class="pcontent">Will the high concentration of CO<sub>2</sub> retard growth of engineered bacteria?</p>
+
                                            team </a>. They work for degrading straw with synthetic biology and convert
                                    <p class="pcontent">Microalgae is reported resistant to SOx and NOx. Does <i>E. coli</i> survive under such conditions?</p>
+
                                         the product into bio-fuel. One of the product from straw degradation is xylose.
                                    <p class="pcontent">The best condition for engineered <i>E. coli</i> to capture CO<sub>2</sub> is a lower CO<sub>2</sub>
+
                                         These techniques are eco-friendly and low-energy-require. Therefore, the
                                        concentration without too much SOx and NOx particles.
+
                                         process development of xylose production will be a low-carbon-emission process.
                                         However, we won’t be able to provide an ideal culture condition in Industrial application.  
+
                                        After testing the tolerance of <i>E. coli</i>, we conclude that <i>E. coli</i> is possible to survive under that
+
                                         kind of condition in factory and the only effects its expression.
+
                                         It may not capture as much CO<sub>2</sub> as culture in the lab.
+
 
                                     </p>
 
                                     </p>
                                     <p class="pcontent">It is important to define a specific commercial product that can be truly produced
+
                                     <h5 class="boldh5" id="downstream">C. Downstream products purification and
                                         since your user may consider its economic viability.
+
                                         biosafety</h5>
                                         They stated that a product that can be widely used is better.  
+
                                    <div class="centerimg">
                                         At the same time, we should consider current GMO legislation if we want to commercialize those products.
+
                                         <img class="smallimg" src="https://static.igem.org/mediawiki/2018/7/7e/T--NCKU_Tainan--applied_design_downstream.png"
                                         The actual condition is not as ideal as in the laboratory,  
+
                                            alt="downstream">
                                         we should optimize the condition to maximize the carbon fixation ability of the microbes.
+
                                    </div>
 +
                                    <p class="pcenter">Fig 6. Diagram of downstream process</p>
 +
                                    <p class="pcontent">We will discharge 90% of the used medium in the bioreactor one
 +
                                        hour before new medium flows in. Which means that we let 10% of the culture
 +
                                         remain in the bioreactor as seed culture. The effluent medium will be
 +
                                         sterilized and filtered in the downstream clean-up tank. At this step, we
 +
                                         harvest the bacteria and extracting the by-product such as amino acids,
 +
                                        proteins, medicine or bio-fuel. Different extracting process designed depends
 +
                                        on different by-product.
 
                                     </p>
 
                                     </p>
                                     <h5 class="boldh5">Interview record</h5>
+
                                     <p class="pcontent">Besides, we try to reuse the waste heat of factories for
                                    <p class="pcontent"> The record can be separated into two parts. One is about their feedback after interview, another one is our customer investigate
+
                                        sterilizing. The waste water can be recycled as well through removing toxins
                                      questions. We use CSC represent China Steel.
+
                                        and adjusting pH value the effluent could return to the medium tank. As for
                                    </p>  
+
                                        energy require for this system, renewable energy helps us to reach near -zero
                                </div>
+
                                        carbon emission process.
 +
                                    </p>
 +
                                    <p class="pcontent">Furthermore, we would like to set up membrane bioreactor (MBR)
 +
                                        system, which use a hollow filter membrane that is able to filter most of
 +
                                        bacteria in the sewage sludge. We use the system to concentrate the used medium
 +
                                        before extracting by-product. And the water went through the system is able to
 +
                                        recycle back to the medium tank.
 +
                                    </p>
 +
                                    <div class="centerimg">
  
 +
                                        <img class="smallimg" src="https://static.igem.org/mediawiki/2018/c/c1/T--NCKU_Tainan--Product_MBR.gif"
 +
                                            alt="MBR">
 +
                                        <p class="pcenter">Fig 7. Picture of waste water recycle system </p>
  
 +
                                        <img class="smallimg" src="https://static.igem.org/mediawiki/2018/1/11/T--NCKU_Tainan--Product_MBRreal.jpg"
 +
                                            alt="real MBR">
 +
                                        <p class="pcenter">Fig 8. Picture of MBR from KME technology Inc.</p>
 +
                                    </div>
  
                                 <div id="Cost_Evaluation">
+
                                 </ol>
                                     <h3>Cost Evaluation</h3>
+
                            </div>
                                    <p class="pcontent">The cost evaluation is always crucial for product being on the market. To compare our engineered <i>E. coli</i> to microalgae, we
+
                            <div id="Application">
                                     calculate how much the cost it would be when capturing 1000 kilograms CO<sub>2</sub>.
+
                                <h3>Application : China Steel</h3>
 +
                                <img class="bigimg" src="https://static.igem.org/mediawiki/2018/a/a9/T--NCKU_Tainan--applied_design_chinasteel1.png"
 +
                                     alt="china_steel">
 +
                                <p class="pcenter">Fig 9. Picture of CSC interview</p>
 +
                                <p class="pcontent">Meeting with experts and stakeholders is important in shaping our
 +
                                    project to fulfill the needs of our target user.
 +
                                    China Steel Corporation is the largest integrated steel Manufacturer in Taiwan.
 +
                                    Also, they had been adopting the algal bio-sequestration by
 +
                                    cooperating with the research group at our university.
 +
 
 +
                                </p>
 +
                                <h5 class="boldh5">Process</h5>
 +
                                <p class="pcontent">We were given the opportunity to meet with the senior executive of
 +
                                    China Steel Corporation
 +
                                    to gain invaluable insight for our research. The meeting commenced with our
 +
                                    presentation.
 +
                                    During the presentation, we introduced our project, including the bioreactor design
 +
                                    and the industrial model.
 +
                                    By listing out all the aspects we had considered, we would like to obtain advice
 +
                                    on the practical and social considerations involved in the application of our
 +
                                    project in industry.
 +
                                </p>
 +
 
 +
                                <h5 class="boldh5">Suggestion and Question</h5>
 +
                                <p class="pcontent">Will the high concentration of CO<sub>2</sub> retard growth of
 +
                                    engineered bacteria?</p>
 +
                                <p class="pcontent">Microalgae is reported resistant to SOx and NOx. Does <i>E. coli</i>
 +
                                    survive under such conditions?</p>
 +
                                <p class="pcontent">The two questions above were the main concern of CSC. Basically,the
 +
                                    best condition for engineered <i>E. coli</i> to capture CO<sub>2</sub> is a lower
 +
                                    CO<sub>2</sub>
 +
                                    concentration without too much SOx and NOx particles.
 +
                                    However, we won’t be able to provide an ideal culture condition in Industrial
 +
                                    application.
 +
                                    After testing the tolerance of <i>E. coli</i>, we conclude that <i>E. coli</i> is
 +
                                    possible to survive under that
 +
                                    kind of condition in factory and the only effects its expression.
 +
                                    It may not capture as much CO<sub>2</sub> as culture in the lab.
 +
                                </p>
 +
                                <p class="pcontent">It is important to define a specific commercial product that can be
 +
                                    truly produced
 +
                                    since your user may consider its economic viability.
 +
                                    They stated that a product that can be widely used is better.
 +
                                    At the same time, we should consider current GMO legislation if we want to
 +
                                    commercialize those products.
 +
                                    The actual condition is not as ideal as in the laboratory,
 +
                                    we should optimize the condition to maximize the carbon fixation ability of the
 +
                                    microbes.
 +
                                </p>
 +
                                <h5 class="boldh5">Interview record</h5>
 +
                                <p class="pcontent"> The record can be separated into two parts.
 +
                                    One is about their feedback after interview, another one is our customer
 +
                                    investigate questions.
 +
                                    We use CSC represent China Steel.
 +
                                </p>
 +
                                <p class="pcontent"><a class="link" href="https://2018.igem.org/Team:NCKU_Tainan/Entrepreneurship#CSC">Click
 +
                                        to see complete interview</a></p>
 +
                            </div>
 +
 
 +
                            <div id="Business_Model">
 +
                                <h3>Business Model</h3>
 +
                                <p class="pcontent">The business model describes how an organization creates,
 +
                                    delivers, and captures value in an economic, social, cultural, or other
 +
                                    environment.
 +
                                    Therefore, we introduce this business model as the basis for assessing the
 +
                                    integrity and
 +
                                    effectiveness of our ideas to work with our industry and even national research.
 +
                                    First, we ask questions about this, and beyond the solution,
 +
                                    we also explain why we chose this question. Second, we analyzed future
 +
                                    developments,
 +
                                    including the advantages of using this approach.
 +
                                    Next, we introduce our plan to many relevant departments and discuss with the
 +
                                    national research.
 +
                                    I hope that this plan can be used to promote this plan in the future.
 +
                                </p>
 +
                                <h5 class="boldh5">Target issue</h5>
 +
                                <p class="pcontent">More and more people are now paying attention to the impact of CO<sub>2</sub>.
 +
                                    The trend of environmental degradation is gradually increasing.
 +
                                    Scientist and national worldwide contribute to capture those excessive CO<sub>2</sub>.
 +
                                    However, how to reduce carbon and use it has become a major problem today.
 +
                                    Challenges against carbon process are complicate. Except the technique and
 +
                                    implement problem,
 +
                                    social acceptability and policy are other key factors about carbon process
 +
                                    technology.
 +
                                </p>
 +
                                <p class="pcontent">In general, planting is a method of carbon process,
 +
                                    and the current use of green algae as a method of carbon utilization.
 +
                                    This year, we hope to combine synthetic biology with the most advanced
 +
                                    technologies.
 +
                                    We want to draw people's attention to the environment and reuse these
 +
                                    environmentally
 +
                                    stimulating projects.
 +
                                </p>
 +
                                <h5 class="boldh5"> Business model analysis </h5>
 +
                                <div class="centerimg">
 +
                                    <img style="width: 100%; height: auto;" src="https://static.igem.org/mediawiki/2018/4/48/T--NCKU_Tainan--applied_design_business_model.png"
 +
                                        alt="gasflow">
 +
                                </div>
 +
                                <p class="pcontent"></p>
 +
                                <h5 class="boldh5"></h5>
 +
                            </div>
 +
 
 +
                            <div id="Cost_Evaluation">
 +
                                <h3>Cost Evaluation</h3>
 +
                                <p class="pcontent">The cost evaluation is always crucial for product being on the
 +
                                    market.
 +
                                    To compare our engineered <i>E. coli</i> to microalgae,
 +
                                     we calculate how much the cost it would be when capturing 1 ton of CO<sub>2</sub>.
 +
                                </p>
 +
                                <h5 class="boldh5">Volume</h5>
 +
                                <p class="pcenter" id="closep"> Table 1 Volume required in capturing 1 ton of CO<sub>2</sub></p>
 +
                                <div class="card card-body">
 +
                                    <table>
 +
                                        <tr>
 +
                                            <th colspan="1">Organisms</th>
 +
                                            <th colspan="1">CO<sub>2</sub>-fixation rate (mg/L*hr)</th>
 +
                                            <th colspan="1">Biomass concentration (gDCW/L)</th>
 +
                                            <th colspan="1">Specific CO<sub>2</sub>-fixation rate</th>
 +
                                            <th colspan="1">Volume requiredd (L)</th>
 +
                                        </tr>
 +
                                        <tr>
 +
                                            <td colspan="1">Engineered <i>E. coli</i></td>
 +
                                            <td colspan="1">19.6</td>
 +
                                            <td colspan="1">0.87</td>
 +
                                            <td colspan="1">22.5</td>
 +
                                            <td colspan="1">51000</td>
 +
                                        </tr>
 +
                                        <tr>
 +
                                            <td colspan="1">Chlorella vulgaris</td>
 +
                                            <td colspan="1">53</td>
 +
                                            <td colspan="1">5.7</td>
 +
                                            <td colspan="1">9.3</td>
 +
                                            <td colspan="1">19000</td>
 +
                                        </tr>
 +
                                    </table>
 +
                                    <br>
 +
                                    <div class="centerimg">
 +
                                        <img style="width: 70%; height: auto;" src="https://static.igem.org/mediawiki/2018/3/31/T--NCKU_Tainan--cost_volume.jpg"
 +
                                            alt="volume">
 +
                                    </div>
 +
                                    <p class="pcenter">Fig 6. Different volume required between micralgae and
 +
                                        engineered <i>E. coli</i> </p>
 +
                                    <p class="pcontent">
 +
                                        For capturing 1kg of CO<sub>2</sub> in one hour, 51000 L is required with
 +
                                        engineered <i>E. coli</i> carbon utilization. It seems that the difference
 +
                                        volume required for utilizing same amount of CO<sub>2</sub> is disadvantage of
 +
                                        <i>E. coli</i> carbon utilization system. At this situation, we have to look
 +
                                        into the design of the different bioreactor. For microalgae culture, it
 +
                                        requires a large surface area to increase light intensity. As usual, the height
 +
                                        of the microalgae culture pond cannot exceed 0.5 m. In other words, we have to
 +
                                        build a 7 m diameter culture pond with the volume of 19000L. In constrast,
 +
                                        engineered <i>E. coli</i> is not limited by light. The bioreactor of <i>E. coli</i>
 +
                                        can be built with any height in the indoor or outdoor. To scale up the
 +
                                        bioreactor, a 5.8 m diameted with 1.9 m height equals to 51000 L which has
 +
                                        lower floor area required.
 +
                                    </p>
 +
                                    <p class="pcontent">As a result,the bioreactor of engineered <i>E. coli</i> can
 +
                                        save more than 30% floor area compared with micoralgae culture pond. Take the
 +
                                        floor area of Taiwan as an example, we can build 94 billions of microalgae
 +
                                        culture pond to uilize 10% of annual emission with 12 operation hours. However,
 +
                                        1 over 3 of floor area will be save if we replace them with <i>E. coli</i>
 +
                                        bioreactor. <i>E. coli</i> bioreactor is more flexible on spacing using, and is
 +
                                        less sensitive to weather effect.
 +
                                    </p>
 +
 
 +
                                </div>
 +
                                <h5 class="boldh5">Cost</h5>
 +
                                <p class="pcontent">
 +
                                    The most expensive source in the medium of our engineered <i>E. coli</i> is xylose.
 +
                                    1 mole of xylose will capture 0.17 mole of CO<sub>2</sub>.
 +
                                    Therefore, we need 20.0535 kg of xylose while 1 kg of xylose costs 2 USD.
 +
                                    The total cost for our engineered <i>E. coli</i> requires 40.107 USD for capture 1
 +
                                    ton of CO<sub>2</sub>.
 +
                                    In contrast, microalgae needs 1000 liter to capture 250 g of CO<sub>2</sub>,
 +
                                    so it needs 4000 liter (about 4 tons) water while 1 ton costs 9.78 USD.
 +
                                    The total cost for microalgae is 39.13 USD.
 +
                                </p>
 +
                                <p class="pcenter" id="closep"> Table 2 Cost required in capturing 1 ton of CO<sub>2</sub>
 +
                                </p>
 +
                                <div class="card card-body">
 +
                                    <table>
 +
                                        <tr>
 +
                                            <th colspan="1">Item</th>
 +
                                            <th colspan="1">Microalgae</th>
 +
                                            <th colspan="1">Engineered <i>E. coli</i></th>
 +
                                        </tr>
 +
                                        <tr>
 +
                                            <td colspan="1">CO<sub>2</sub> utilizing rate</td>
 +
                                            <td colspan="1">250 g/m<sup>3</sup>/day</td>
 +
                                            <td colspan="1">19.6 mg/g (DRY cell weight)</td>
 +
                                        </tr>
 +
                                        <tr>
 +
                                            <td colspan="1">source required for 1 kg CO<sub>2</sub> utilization</td>
 +
                                            <td colspan="1">4 tons of water</td>
 +
                                            <td colspan="1">20.0535 kg xylose</td>
 +
                                        </tr>
 +
                                        <tr>
 +
                                            <td colspan="1">Cost</td>
 +
                                            <td colspan="1">39.13 USD</td>
 +
                                            <td colspan="1">40.107 USD</td>
 +
                                        </tr>
 +
                                        <tr>
 +
                                            <td colspan="1">Source</td>
 +
                                            <td colspan="1">NCKU Annan campus</td>
 +
                                            <td colspan="1">Adjust reference<sup>[1]</sup> and experiment</td>
 +
                                        </tr>
 +
                                    </table>
 +
                                    <p class="pcontent">We take two major industrial in Taiwan for example, which are
 +
                                        China Steel Corporation (CSC) and Taiwan Semiconductor Manufacturing Company
 +
                                        (TSMC). We had done some research on annual emission and calculated with our CO<sub>2</sub>
 +
                                        utilization efficiency. We also set the average carbon emission of small and
 +
                                        medium enterprise (SME) as a standard goal which was easier to reach.
 +
                                        Therefore, we can model the scale of <i>E. coli</i> carbon utilization system
 +
                                        working for 1 % CO<sub>2</sub> emission of different enterprise.
 
                                     </p>
 
                                     </p>
                                     <p class="pcenter"> Table 1 Volume require in capturing 1000 kg CO<sub>2</sub> </p>
+
                                     <p class="pcenter" id="closep"> Table 3 Cost of dealing with 1% amount of
                                    <h5 class="boldh5">Volume</h5>
+
                                        industrial CO<sub>2</sub> emission </p>
 
                                     <div class="card card-body">
 
                                     <div class="card card-body">
 
                                         <table>
 
                                         <table>
 
                                             <tr>
 
                                             <tr>
                                                 <th colspan="1">Organisms</th>
+
                                                 <th colspan="1">Industrial</th>
                                                 <th colspan="1">CO<sub>2</sub>-fixation rate (mg/L*hr)</th>
+
                                                 <th colspan="1">annual emission</th>
                                                 <th colspan="1">Biomass concentration (gDCW/L)</th>
+
                                                <th colspan="1">1% of CO<sub>2</sub> emission per hour</th>
                                                 <th colspan="1">Specific CO<sub>2</sub>-fixation rate</th>
+
                                                <th colspan="1">Number of required device</th>
                                                 <th colspan="1">Volume needed (L)</th>                                                      
+
                                                 <th colspan="1">Area required</th>
 +
                                                <th colspan="1">Operation cost (USD)</th>
 +
 
 +
                                            </tr>
 +
                                            <tr>
 +
                                                 <td colspan="1">CSC</td>
 +
                                                <td colspan="1">3.30 millon tons </td>
 +
                                                <td colspan="1">3750 kg</td>
 +
                                                 <td colspan="1">4555</td>
 +
                                                <td colspan="1">11.3875 hectare</td>
 +
                                                <td colspan="1">150.4 thousands </td>
 
                                             </tr>
 
                                             </tr>
 
                                             <tr>
 
                                             <tr>
                                                 <td colspan="1">Engineered <i>E. coli</i></td>
+
                                                 <td colspan="1">TSMC</td>
                                                 <td colspan="1">19.6</td>
+
                                                <td colspan="1">0.387 millon tons</td>
                                                 <td colspan="1">0.87</td>
+
                                                 <td colspan="1">442 kg</td>
                                                 <td colspan="1">22.5</td>
+
                                                 <td colspan="1">537</td>
                                                 <td colspan="1">51000</td>
+
                                                 <td colspan="1">1.34 hectare</td>
 +
                                                 <td colspan="1">17.3 thousands </td>
 
                                             </tr>
 
                                             </tr>
 
                                             <tr>
 
                                             <tr>
                                                 <td colspan="1">Chlorella vulgaris</td>
+
                                                 <td colspan="1">SME</td>
                                                 <td colspan="1">53</td>
+
                                                 <td colspan="1">20 thousands tons</td>
                                                 <td colspan="1">5.7</td>
+
                                                 <td colspan="1">23.529 kg</td>
                                                 <td colspan="1">9.3</td>
+
                                                 <td colspan="1">29</td>
                                                 <td colspan="1">19000</td>
+
                                                <td colspan="1">0.0713 hectare</td>
 +
                                                 <td colspan="1">1 thousands </td>
 
                                             </tr>
 
                                             </tr>
 
                                         </table>
 
                                         </table>
 
                                     </div>
 
                                     </div>
                                     <h5 class="boldh5">Cost</h5>
+
                                     <p class="pcontent" id="closep"> We take two major industrial in Taiwan for
                                    <p class="pcontent">
+
                                        example,
                                         The most expensive source in the medium of our engineered <i>E. coli</i> is xylose.
+
                                         which are China Steel Corporation (CSC) and Taiwan Semiconductor Manufacturing
                                         1 mole xylose will capture 0.17 mole CO<sub>2</sub>,  
+
                                        Company (TSMC). We had research on annual emission and calculate with our
                                         so it would need 20.0535 kilograms xylose and 1 kilogram xylose is cost 2 USD.
+
                                         CO<sub>2</sub> utilization efficiency. Therefore,
                                        The total cost for our engineered <i>E. coli</i> is require 40.107 USD for capture 1 kilogram CO<sub>2</sub>.
+
                                         we can model the scale of <i>E. coli</i> carbon utilization system working
                                        In contrast, microalgae need 1000 liter to capture 250 gram CO<sub>2</sub>,
+
                                        for 1 % of industrial CO<sub>2</sub> emission.
                                        so it need 4000 liter (about 4 Tons) water and 1 tons is cost 9.78 USD (300NT).
+
                                        The total cost for microalgae is require 39.13 USD.
+
 
                                     </p>
 
                                     </p>
                                     <p class="pcenter"> Table 1 Volume require in capturing 1000 kg CO<sub>2</sub> </p>
+
                                    <br>
 +
                                    <h5 class="boldh5">Energy consumption</h5>
 +
                                     <p class="pcontent">Our bioreactor applies in the industry,
 +
                                        including the magnetic stirrer, pump and controller.
 +
                                        It will cost 3313 USD every month if the price of industrial electricity
 +
                                        is 0.063 USD per kWh.
 +
                                    </p>
 +
                                    <br>
 +
                                    <p class="pcenter"> Table 4 Energy consumption of different items of device </p>
 
                                     <div class="card card-body">
 
                                     <div class="card card-body">
 
                                         <table>
 
                                         <table>
 
                                             <tr>
 
                                             <tr>
                                                 <th colspan="1">Item</th>
+
                                                 <th colspan="1"></th>
                                                 <th colspan="1">Microalgae</th>
+
                                                 <th colspan="1">Magnetic stirrer</th>
                                                 <th colspan="1">Engineered <i>E. coli</i></th>                                          
+
                                                 <th colspan="1">Pump</th>
 +
                                                <th colspan="1">Controller</th>
 +
 
 
                                             </tr>
 
                                             </tr>
 
                                             <tr>
 
                                             <tr>
                                                 <td colspan="1">CO2 utilizing rate</td>
+
                                                 <td colspan="1">hp</td>
                                                 <td colspan="1">250g/m3/day</td>
+
                                                 <td colspan="1">2 </td>
                                                 <td colspan="1">19.6 mg/g (DRY cell weight)</td>
+
                                                 <td colspan="1">none</td>
 +
                                                <td colspan="1">100</td>
 
                                             </tr>
 
                                             </tr>
 
                                             <tr>
 
                                             <tr>
                                                 <td colspan="1">source required for 1kg CO2 utilization</td>
+
                                                 <td colspan="1">kW</td>
                                                 <td colspan="1">4 tons of water</td>
+
                                                 <td colspan="1">1.47</td>
                                                 <td colspan="1">20.0535kg xylose</td>
+
                                                 <td colspan="1">0.1</td>
 +
                                                <td colspan="1">73.5</td>
 +
 
 
                                             </tr>
 
                                             </tr>
 
                                             <tr>
 
                                             <tr>
                                                 <td colspan="1">Cost</td>
+
                                                 <td colspan="1">kWh</td>
                                                 <td colspan="1">39.13USD</td>
+
                                                 <td colspan="1">1058.4</td>
                                                 <td colspan="1">40.107USD</td>
+
                                                 <td colspan="1">72</td>
 +
                                                <td colspan="1">52920</td>
 +
 
 
                                             </tr>
 
                                             </tr>
 
                                             <tr>
 
                                             <tr>
                                                 <td colspan="1">Source</td>
+
                                                 <td colspan="1">Price (USD)</td>
                                                 <td colspan="1">NCKU Annan campus</td>
+
                                                 <td colspan="1">67.03</td>
                                                 <td colspan="1">Adjust reference<sup>[1]</sup> and experiment</td>
+
                                                 <td colspan="1">4.56</td>
 +
                                                <td colspan="1">3351.6</td>
 +
 
 
                                             </tr>
 
                                             </tr>
 
                                         </table>
 
                                         </table>
                                         <p class="pcontent">According to our research of mircoalgae culture in AN-nan campus,
+
                                         <p class="pcontent hpword">* hp = horse power</p>
                                            we list the data of its cost and CO<sub>2</sub> utilization rate to help us optimize our project. As a result, we conclude that Engineered E. coli has a
+
                                        <p class="pcontent hpword">* kW = kilowatt </p>
                                            strong competitive advantage with proper cost to apply it.
+
                                         <p class="pcontent hpword">* kWh = kilowatt per hour in one month</p>
                                         </p>
+
 
                                     </div>
 
                                     </div>
 
                                 </div>
 
                                 </div>
 +
 
                                 <div id="Future_Work">
 
                                 <div id="Future_Work">
 
                                     <h3>Future Work</h3>
 
                                     <h3>Future Work</h3>
                                     <p class="pcontent">For industrial application design, we focus on manufacturing valuable products using pyruvate and  
+
                                     <p class="pcontent">For industrial application design, we focus on manufacturing
                                         the linkage between our engineered <i>E. coli</i> between factory.  
+
                                        valuable products using pyruvate and
                                         We have designed a device containing our recombinant <i>E. coli</i>,  
+
                                         the linkage between our engineered <i>E. coli</i> between factory.
                                         constructed a system which links with factory.  
+
                                         We have designed a device containing our recombinant <i>E. coli</i>,
                                         However, we still look forward to more modifications of our biological pathway and system.
+
                                         constructed a system which links with factory.
 +
                                         However, we still look forward to more modifications of our biological pathway
 +
                                        and system.
 
                                     </p>
 
                                     </p>
                                     <p class="pcontent">The most important intermediate product, pyruvate,  
+
                                     <p class="pcontent">The most important intermediate product, pyruvate,
                                         is also possible to be converted to other compounds by <i>E. coli</i> native enzymes or constructed enzymes  
+
                                         is also possible to be converted to other compounds by <i>E. coli</i> native
                                         which is clone into <i>E. coli</i> from other organism.  
+
                                        enzymes or constructed enzymes
                                         For future work of pyruvate, we expect that it is predicable to produce amino acid, fatty acid,  
+
                                         which is clone into <i>E. coli</i> from other organism.
                                         biofuel and even biodegradable plastic. Pyruvate is crucial for central metabolism pathway,  
+
                                         For future work of pyruvate, we expect that it is predicable to produce amino
                                         the TCA cycle, of most organism and has the potential to become vary biochemistry compounds.  
+
                                        acid, fatty acid,
 +
                                         biofuel and even biodegradable plastic. Pyruvate is crucial for central
 +
                                        metabolism pathway,
 +
                                         the TCA cycle, of most organism and has the potential to become vary
 +
                                        biochemistry compounds.
 
                                     </p>
 
                                     </p>
                                     <p class="pcontent">We set our first future goal at producing glutamine,  
+
                                     <p class="pcontent">We set our first future goal at producing glutamine,
                                         an essential amino acid for human and some animals. We can simply purify it as a nutrient supply.  
+
                                         an essential amino acid for human and some animals. We can simply purify it as
                                         Not only for medical and daily usage for people, but also for animal husbandry.  
+
                                        a nutrient supply.
                                         Furthermore, glutamine can easily convert to other amino acid, and potentially produce other proteins.
+
                                         Not only for medical and daily usage for people, but also for animal husbandry.
 +
                                         Furthermore, glutamine can easily convert to other amino acid, and potentially
 +
                                        produce other proteins.
 
                                     </p>
 
                                     </p>
                                     <img class="bigimg" src="https://static.igem.org/mediawiki/2018/4/46/T--NCKU_Tainan--applied_design_gasflow.png" alt="gasflow">
+
                                     <div class="centerimg">
                                        <p class="pcenter"> Fig. 7 Diagram of pyruvate in central carbon metabolism </p>
+
                                        <img style="width: 70%; height: auto;" src="https://static.igem.org/mediawiki/2018/1/15/T--NCKU_Tainan--applied_design_future_work.png"
                                     <p class="pcontent">Furthermore, researchers have successfully constructed pathways produced cellulose and  
+
                                            alt="gasflow">
                                         Poly 3-Hydroxybutyrate-co-3-Hydroxyvalerate through the TCA cycle.  
+
                                    </div>
                                         We are confident of manufacturing more valuable and diverse products from pyruvate.
+
                                    <p class="pcenter">Fig 10. Diagram of pyruvate in central carbon metabolism </p>
 +
                                     <p class="pcontent">Furthermore, researchers have successfully constructed pathways
 +
                                        produced cellulose and
 +
                                         Poly 3-Hydroxybutyrate-co-3-Hydroxyvalerate through the TCA cycle.
 +
                                         We are confident of manufacturing more valuable and diverse products from
 +
                                        pyruvate.
 
                                     </p>
 
                                     </p>
                                     <p class="pcontent">WAs for the device we designed, we expect that it is possible to modify our device for power  
+
                                     <p class="pcontent">WAs for the device we designed, we expect that it is possible
                                         generator and other industry. Our device can utilize CO<sub>2</sub> and convert it into various valuable products.  
+
                                        to modify our device for power
                                         With our system, companies can not only reduce CO<sub>2</sub> emission but also make profits.
+
                                         generator and other industry. Our device can utilize CO<sub>2</sub> and convert
 +
                                        it into various valuable products.
 +
                                         With our system, companies can not only reduce CO<sub>2</sub> emission but also
 +
                                        make profits.
 
                                     </p>
 
                                     </p>
 
                                 </div>
 
                                 </div>
 +
 
                                 <div id="Reference">
 
                                 <div id="Reference">
                                     <h3>Reference</h3>
+
                                     <h3>References</h3>
 
                                     <ol>
 
                                     <ol>
                                         <li class="smallp">Fuyu G, Guoxia L, Xiaoyun Z, Jie Z, Zhen C and Yin L. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Gong et al. Biotechnology for Biofuels, 2015, 8:86.</li>
+
                                         <li class="smallp">G. Fuyu, L. Guoxia, Z. Xiaoyun, Z. Jie, C. Zhen, L. Yin,
                                         <li class="smallp">  
+
                                            Quantitative analysis of an engineered CO<sub>2</sub>-fixing Escherichia
張嘉修、陳俊延、林志生、楊勝仲、周德珍、郭子禎、顏宏偉、李澤民 (2015), 二氧化碳再利用─微藻養殖, 科學發展 2015 年 6 月│ 510 期 </li>
+
                                            coli reveals great potential of heterotrophic CO<sub>2</sub> fixation. Gong
                                        <li class="smallp"> Lawrence Irlam (2017), GLOBAL COSTS OF CARBON CAPTURE AND
+
                                            et al. Biotechnology for Biofuels, 2015, 8:86.</li>
STORAGE, Global CCS Institute, Senior Adviser Policy & Economics, Asia-Pacific Region </li>
+
                                         <li class="smallp">
 +
                                            張嘉修、陳俊延、林志生、楊勝仲、周德珍、郭子禎、顏宏偉、李澤民 (2015), 二氧化碳再利用─微藻養殖, 科學發展 2015 年 6 月│ 510
 +
                                            期 </li>
 +
                                        <li class="smallp"> L. Irlam, GLOBAL COSTS OF CARBON CAPTURE AND
 +
                                            STORAGE, Global CCS Institute, Senior Adviser Policy & Economics,
 +
                                            Asia-Pacific Region </li>
 +
                                        <li class="smallp">J. H. Park, J. E. Oh, K. H. Lee, J. Y. Kim, S. Y. Lee.
 +
                                            Rational Design of Escherichia coli for L‑Isoleucine Production. [ACS Synth
 +
                                            Biol.](https://www.ncbi.nlm.nih.gov/pubmed/23656230#) 2012</li>
 +
                                        <li class="smallp">M. KUNDAK, L. LAZI], J. RNKO. CO<sub>2</sub> EMISSIONS IN
 +
                                            THE STEEL INDUSTRY. METALURGIJA 48, 2009</li>
 +
                                        <li class="smallp">V. N. Kalpana, D. S. Prabhu, S. Vinodhini, Devirajeswari V.
 +
                                            Biomedical waste and its management. Journal of Chemical and Pharmaceutical
 +
                                            Research, 2016</li>
 +
                                        <li class="smallp">Q. Ma, Q. Zhang, Q. Xu, C. Zhang, Y. Li, X. Fan, X. Xie, N.
 +
                                            Chen. Systems metabolic engineering strategies for the production of amino
 +
                                            acids. Synthetic and Systems Biotechnology 2 (2017)</li>
 +
                                        <li class="smallp">J. B. Magnus, D. Hollwedel, M. Oldiges, R. Takors.
 +
                                            Monitoring and Modeling of the Reaction Dynamics in the Valine/Leucine
 +
                                            Synthesis Pathway in Corynebacterium glutamicum. Biotechnol. Prog. 2006</li>
 +
                                        <li class="smallp">I. Kusumoto. Industrial Production of L-Glutamine. American
 +
                                            Society for Nutritional Sciences, 2001</li>
 +
                                        <li class="smallp">Q. Chen, Q. Wang, G. Wei, Q. Liang, Q. Qi. Production
 +
                                            inEscherichia coli of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with
 +
                                            Differing Monomer Compositions from Unrelated Carbon Sources. APPLIED AND
 +
                                            ENVIRONMENTAL MICROBIOLOGY, 2011</li>
 
                                     </ol>
 
                                     </ol>
 
                                 </div>
 
                                 </div>
Line 247: Line 593:
 
             </div>
 
             </div>
 
         </div>
 
         </div>
        <script>
+
    </div>
         $(document).ready(function() {
+
 
          $(window).scroll(function() {
+
    <script>
            var scrollPercentage = (document.documentElement.scrollTop + document.body.scrollTop) / (document.documentElement.scrollHeight - document.documentElement.clientHeight);    
+
         $(document).ready(function () {
            if(scrollPercentage >= 0.95) {
+
            $(window).scroll(function () {
              var position = $("#sidelist").position();
+
                var scrollPercentage = (document.documentElement.scrollTop + document.body.scrollTop) /
              if(position == undefined){}
+
                    (document.documentElement.scrollHeight - document.documentElement.clientHeight);
              else{
+
                if (scrollPercentage >= 0.95) {
                $('#sidelist').css({"position": "fixed", "top": "105px"});
+
                    var position = $("#sidelist").position();
              }
+
                    if (position == undefined) {} else {
            } else {
+
                        $('#sidelist').css({
              if ($(this).scrollTop() >= 80) {
+
                            "position": "fixed",
                var position = $("#sidelist").position();
+
                            "top": "105px"
                  if(position == undefined){}
+
                        });
                  else{
+
                    }
                    $('#sidelist').css({"position": "fixed", "top": "145px", "margin-top": "0px"});
+
                } else {
                  }
+
                    if ($(this).scrollTop() >= 500) {
              } else {
+
                        var position = $("#sidelist").position();
                $('#sidelist').removeAttr('style');
+
                        if (position == undefined) {} else {
              }
+
                            $('#sidelist').css({
            }
+
                                "position": "fixed",
          });
+
                                "top": "145px",
          $(function(){
+
                                "margin-top": "0px"
            $('i.fa-arrow-up').click(function(){
+
                            });
            $('html, body').animate({scrollTop:0},600);
+
                        }
              return false;
+
                    } else {
 +
                        $('#sidelist').removeAttr('style');
 +
                    }
 +
                }
 +
            });
 +
            $(function () {
 +
                $('i.fa-arrow-up').click(function () {
 +
                    $('html, body').animate({
 +
                        scrollTop: 0
 +
                    }, 600);
 +
                    return false;
 +
                });
 
             });
 
             });
          });
 
 
         });
 
         });
        </script>
+
    </script>
        <script src="https://2018.igem.org/Team:NCKU_Tainan/js/frame/T--NCKU_Tainan--jquery-1_12_4_min_js?action=raw&amp;ctype=text/javascript"></script>
+
    <script src="https://2018.igem.org/Team:NCKU_Tainan/js/frame/T--NCKU_Tainan--jquery-1_12_4_min_js?action=raw&amp;ctype=text/javascript"></script>
        <script src="https://2018.igem.org/Template:NCKU_Tainan/js/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
+
    <script src="https://2018.igem.org/Template:NCKU_Tainan/js/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
    </body>
+
</body>
 +
 
 
</html>
 
</html>
 
{{NCKU_Tainan/footer}}
 
{{NCKU_Tainan/footer}}

Latest revision as of 16:19, 1 November 2018

Product Design

Ideas Come True
Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)