Difference between revisions of "Team:NCKU Tainan/Design"

(Blanked the page)
 
(71 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
+
{{NCKU_Tainan/header}} {{NCKU_Tainan/navbar}} {{NCKU_Tainan/style}}
 +
<html>
 +
    <head>
 +
        <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/design?action=raw&ctype=text/css">
 +
    </head>
 +
    <body data-spy="scroll" data-target=".navbar-example">
 +
        <div class="container content">
 +
            <div class="headstyle">
 +
                <h1 class="head">Design</h1>
 +
            </div>
 +
            <div class="righttitle">
 +
                <h6 class="subtitle">Bring Solutions, Not Problems</h6>
 +
            </div>
 +
            <div class="navbar-example">
 +
                <div class="row">
 +
                    <div class="col-2 side">     
 +
                        <div id="sidelist" class="list-group">
 +
                            <a class="list-group-item list-group-item-action" href="#Overview">Overview</a>
 +
                            <a class="list-group-item list-group-item-action" href="#Chassis_Organism">Chassis Organism</a>
 +
                            <a class="list-group-item list-group-item-action" href="#Prk">Prk</a>
 +
                            <a class="list-group-item list-group-item-action" href="#Rubisco">Rubisco</a>
 +
                            <a class="list-group-item list-group-item-action" href="#CA">CA</a>
 +
                            <a class="list-group-item list-group-item-action" href="#dual_plasmid_system">Dual plasmid system</a>
 +
                            <a class="list-group-item list-group-item-action" href="#pH_sensing_system">pH sensing system</a>
 +
                            <a class="list-group-item list-group-item-action" href="#Reference">References</a>
 +
                            <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x" aria-hidden="true"></i></a>
 +
                        </div>
 +
                    </div>
 +
                    <div class="col-10">
 +
                        <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
 +
                            <div class="container">
 +
                                <div id="Overview">
 +
                                    <h3>Overview of Designed Pathway</h3>
 +
                                    <img class="gif" src="https://static.igem.org/mediawiki/2018/2/2c/T--NCKU_Tainan--wetdesign.gif" alt="Total pathway">
 +
                                    <p class="pcontent">Calvin-Benson cycle is one of the most important pathways for inorganic carbon to be converted into organic carbon in the carbon cycle.
 +
                                        Plant, algae, and cyanobacteria utilize light as energy source for Calvin-Benson cycle.
 +
                                        Taking the advantage of the pentose phosphate pathway, a native metabolic pathway of <i>E. coli</i>,
 +
                                        only two additional enzymes will be needed to reconstruct the pathway in <i>E. coli</i> -- PRK and Rubisco,
 +
                                        which we will describe more in detail.
 +
                                        The primary product of the pathway is pyruvate, which can be utilized to produce various valuable products.
 +
                                    </p>
 +
                                    <img class="gif" src="https://static.igem.org/mediawiki/2018/3/30/T--NCKU_Tainan--design_totalpathway.gif" alt="Total pathway">
 +
                                </div>
 +
                                <div id="Chassis_Organism">
 +
                                    <h3>Chassis Organism</h3>
 +
                                    <p class="pcontent">We would like to test our pathway in various <i>E. coli</i> strains to see the functionality of our construction.
 +
                                        We selected three different strains: BL21 (DE3), W3110, W3110 (L5T7).
 +
                                        BL21 (DE3) is a common expression strain that is widely used to express recombinant proteins using T7 polymerase.
 +
                                        We expected that the high production of protein may change the entire native metabolic pathway.
 +
                                        W3110 (K-12 laboratory strain) is reported to be resilient in a stressed environment.
 +
                                        We expected that W3110 will grow well even if the sole carbon source is xylose.
 +
                                        W3110 (L5T7) (provided by Dr. Ng) is a constructed lab strain based on W3110.
 +
                                        T7 polymerase was inserted into its genome.
 +
                                    </p>
 +
                                </div>
 +
                                <div id="Prk">
 +
                                    <h3>PRK</h3>
 +
                                    <h5 class="question">What is its function?</h5>
 +
                                    <p class="pcontent">We first introduced phosphoribulokinase (PRK), an enzyme from cyanobacterial Calvin cycle,
 +
                                        into the central carbon metabolic pathway of <i>E. coli</i>.
 +
                                        PRK catalyzes the conversion of ribulose-5-phosphate (Ru5P) from the pentose phosphate pathway of
 +
                                        the central carbon metabolism to ribulose-1,5-biphosphate (RuBP).
 +
                                        One ATP is required for this conversion.
 +
                                        The accumulation of RuBP in <i>E.coli</i> would cause cell growth arrest because <i>E. coli</i> can not metabolize RuBP.
 +
                                    </p>
 +
                                    <img class="gif" src="https://static.igem.org/mediawiki/2018/7/71/T--NCKU_Tainan--design_PRK.gif" alt="PRK">
 +
                                   
 +
                                    <div class="row">
 +
                                        <a class="btn col-md-12" data-toggle="collapse" href="#PRK_how_to_construct" role="button" aria-expanded="false" aria-controls="multiCollapseExample1">
 +
                                            How do we construct this part?
 +
                                            <i class="fa fa-arrow-down fa-10" aria-hidden="true"></i>
 +
                                        </a>
 +
                                    </div>   
 +
                                    <div class="collapse multi-collapse" id="PRK_how_to_construct">
 +
                                        <div class="card card-body">
 +
                                            <p class="pcontent">Steps involved in expressing PRK in <i>E. coli.</i>
 +
                                                We initially confirm the gene sequence of <i>Synechococcus elongtus</i> <i>prk</i> from NCBI gene database.
 +
                                                We then codon optimized the sequence so <i>E. coli</i> can express the protein properly.
 +
                                                The optimized sequence was sent to IDT for gene synthesis.
 +
                                                We PCR amplified the gene fragments and digest it with restriction enzymes HindIII and SpeI.
 +
                                                After digestion, we ligate the fragments into pSB3K3 plasmid with P<sub>LacI</sub>-rbs (B0034) located upstream of the fragment.
 +
                                                The plasmid was then transformed into DH5 alpha.
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                    <img class="bigimg" src="https://static.igem.org/mediawiki/2018/d/dd/T--NCKU_Tainan--design_PRK_construction.png" alt="PRK construction picture">
 +
                                   
 +
                                    <h5 class="question">How do we test its function?</h5>
 +
                                    <p class="pcontent">We initially decided to measure the concentration of RuBP by HPLC.
 +
                                        Our instructors pointed out some difficulties in HPLC measurement such as excessive noise signal in our sample.
 +
                                        We then designed an experiment to prove the function of PRK in an indirect manner: by measuring its growth rate.
 +
                                        RuBP, the product of PRK, is toxic to <i>E. coli</i>.
 +
                                        We expressed this protein independently in xylose M9 to check cell growth.
 +
                                        If the cell growth is arrested, we can indirectly conclude the function of PRK.
 +
                                    </p>
 +
                                </div>
 +
                                <div id="Rubisco">
 +
                                    <h3>Rubisco</h3>
 +
                                    <h5 class="question">What is its function?</h5>
 +
                                    <p class="pcontent">Ribulose-1,5-biphosphate carboxylase/oxygenase is one of the world’s most abundant enzyme.
 +
                                        It catalyzes the conversion of inorganic carbon into organic carbon.
 +
                                        In our designed pathway, the function of the Rubisco is to convert ribulose-1,5-biphosphate (RuBP) from the upper pathway and carbon dioxide into 3-phosphoglycerate (3PGA).
 +
                                        3PGA will then be converted to pyruvate by the native metabolic system of <i>E. coli</i>.
 +
                                        After mining information from various publications,
 +
                                        we selected Rubisco from <i>Synechococcus elongatus</i> PCC 7002, which is a well-studied cyanobacteria.
 +
                                        Its genome is completely sequenced and it is often used as a model organism for gene manipulation.
 +
                                        Previous research has utilized <i>E. coli</i> as a host of random mutagenesis to enhance the activity of <i>Synechococcus</i> Rubisco.
 +
                                    </p>
 +
                                    <img class="gif" src="https://static.igem.org/mediawiki/2018/8/85/T--NCKU_Tainan--design_Rubisco.gif" alt="Rubisco">
 +
                                   
 +
                                    <div class="row">
 +
                                        <a class="btn col-md-12" data-toggle="collapse" href="#RuBisCO_how_to_construct" role="button" aria-expanded="false" aria-controls="multiCollapseExample1">
 +
                                            How do we construct this part?
 +
                                            <i class="fa fa-arrow-down fa-10" aria-hidden="true"></i>
 +
                                        </a>
 +
                                    </div>   
 +
                                    <div class="collapse multi-collapse" id="RuBisCO_how_to_construct">
 +
                                        <div class="card card-body">
 +
                                            <p class="pcontent">Akin to the construction of <i>prk</i>, we codon optimized the sequence of three <i>rbc</i> subunit and
 +
                                                clone it into pSB1C3 plasmid with HindIII and SpeI.
 +
                                                The sequence and the size of <i>rbcL</i> is much larger than other subunit,
 +
                                                so we separated <i>rbcL</i> from <i>rbcX</i> and <i>rbcS</i> subunits. <i>rbcX</i> and <i>rbcS</i> is separated by a <i>rbs</i> (B0034) for the convenience of construction.
 +
                                                We attached two different promoters upstream of the <i>rbc</i>. They are P<sub>LacI</sub> and P<sub>T7</sub> promoter.
 +
                                                Since we would like to increase the expression of this protein in the metabolic pathway,
 +
                                                we would like to test various promoter combination to find out the most efficient combination for our pathway.
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                    <img class="bigimg" src="https://static.igem.org/mediawiki/2018/a/ad/T--NCKU_Tainan--design_RBC_construction.png" alt="RBC construction picture">
 +
                                    <h5 class="question">How do we test its function?</h5>
 +
                                    <p class="pcontent">Measurement of 3PGA or pyruvate concentration could not directly reflect the activity of Rubisco
 +
                                        since both of them are important metabolites that will flow to downstream metabolic pathway.
 +
                                        We then decided to determine its function by a total solution test which we will mention below.
 +
                                    </p>
 +
                                </div>
 +
                                <div id="CA">
 +
                                    <h3>CA</h3>
 +
                                    <h5 class="question">What is its function?</h5>
 +
                                    <p class="pcontent">Rubisco is the rate-limiting enzyme in carbon fixation.
 +
                                        Oxygen competes with CO<sub>2</sub> as a substrate for Rubisco, giving rise to photorespiration.
 +
                                        To overcome this problem, some photosynthetic organisms have evolved their own carbon concentrating
 +
                                        mechanism (CCM), which helps to maintain a sufficient amount of CO<sub>2</sub> around Rubisco.
 +
                                    </p>
 +
                                    <p class="pcontent">We are inspired by the carbon concentrating mechanisms (CCM) of cyanobacteria.
 +
                                        In cyanobacteria, Rubisco and carbonic anhydrase (CA) is encapsulated in a microcompartment, the carboxysome.
 +
                                        Carbonic anhydrase, also known as carbonate dehydratase, is involved in the interconversion between CO<sub>2</sub> and HCO<sub>3</sub><sup>-</sup>. This enzyme can be found in most organisms, including <i>E. coli</i> but the difference is its catalyzing rate in hydration and dehydration of CO2. Therefore,
 +
                                        we will incorporate into our system the carbonic anhydrase gene from <i>Synechococcus elongatus</i> PCC 7002.
 +
                                    </p>
 +
                                    <img class="gif" src="https://static.igem.org/mediawiki/2018/3/34/T--NCKU_Tainan--design_CA.gif" alt="Rubisco">
 +
                                    <div class="row">
 +
                                        <a class="btn col-md-12" data-toggle="collapse" href="#CA_how_to_construct" role="button" aria-expanded="false" aria-controls="multiCollapseExample1">
 +
                                            How do we construct this part?
 +
                                            <i class="fa fa-arrow-down fa-10" aria-hidden="true"></i>
 +
                                        </a>
 +
                                    </div>   
 +
                                    <div class="collapse multi-collapse" id="CA_how_to_construct">
 +
                                        <div class="card card-body">
 +
                                            <p class="pcontent">We first codon optimized the sequence and insert it into the empty pSB1C3 plasmid with HindIII and
 +
                                                SpeI just as mentioned above. In our optimized sequence, we have already designed a P<sub>T7</sub> promoter
 +
                                                in front of <i>ca</i>, so we can directly ligate it into the plasmid.
 +
                                                The constructed basic part is then linked with other basic parts to complete our construction.
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                    <img class="bigimg" src="https://static.igem.org/mediawiki/2018/7/78/T--NCKU_Tainan--design_CA_construction.png" alt="CA Construction picture">
 +
                                    <h5 class="question">How do we test its function?</h5>
 +
                                    <p class="pcontent">To measure the enzyme activity of CA, we compare the conversion rate of carbon dioxide to
 +
                                        bicarbonate ion. After saturated CO<sub>2</sub> solution is prepared, we add fixed amount of bacteria broth that
 +
                                        contains CA construction into the solution. We then measure the time taken for the pH value to decrease from 8.3 to 6.3.
 +
                                        We compare the measured time interval with the time interval that enzyme was not added to determine the enzyme activity of CA.
 +
                                    </p>
 +
                                </div>
 +
                                <div id="dual_plasmid_system">
 +
                                    <h3>Dual Plasmid System</h3>
 +
                                    <p class="pcontent">We decided to construct the whole pathway with the dual plasmid system.
 +
                                        Previously, every basic part was the backbone conserved in the backbone of pSB1C3.
 +
                                        We then link the construction together and
 +
                                        even change the backbone of some composite parts to pSB3K3 for a lower protein expression.
 +
                                    </p>
 +
                                    <h5 class="question">Rubisco whole protein in pSB1C3</h5>
 +
                                    <p class="pcontent">We link each basic part together with biobrick standard method.
 +
                                        We link P<sub>T7</sub>-<i>rbcL</i> and P<sub>T7</sub>-<i>rbcX</i>-<i>rbcS</i> together.
 +
                                        The former, the insert, was digested with EcoRI and SpeI and the latter, the backbone,
 +
                                        is digested with EcoRI and XbaI.
 +
                                        We ligate the backbone with the insert to complete this composite part.
 +
                                    </p>
 +
                                    <h5 class="question"><i>prk</i> gene into pSB3K3</h5>
 +
                                    <p class="pcontent">PRK catalyzes the reaction of converting Ru5P into RuBP.
 +
                                        Not native to the host, RuBP is, nonetheless, toxic to <i>E. coli</i>.
 +
                                        We hope that the expression of PRK could be lower in the host so we change the backbone of it into pSB3K3.
 +
                                        We selected J04450 from the distributed kit that under the backbone of pSB3K3,
 +
                                        which will express red color after the formation of the colony. We digest both backbone and insert with EcoRI and PstI and ligate both fragments.
 +
                                        We can then select the colony that does not present red color to prove that the ligation was conducted successfully.
 +
                                    </p>
 +
                                    <h5 class="question">Link <i>prk</i> with <i>ccaA</i> into pSB3K3</h5>
 +
                                    <p class="pcontent">We also constructed the composite part that contains both <i>ccaA</i> and <i>prk</i>.
 +
                                        We construct it using the method mentioned in <i>rbc</i> whole construction.
 +
                                        We cloned the fragments into pSB3K3 for lower expression of PRK.
 +
                                    </p>
 +
                                    <h5 class="question">Transformation</h5>
 +
                                    <p class="pcontent">After the construction of various composite parts,
 +
                                        we co-transform them into three <i>E. coli</i> strains: BL21 (DE3), W3110, and W3110 (L5T7).
 +
                                        Since BL21 (DE3) and W3110 (L5T7) contains T7 polymerase,
 +
                                        we co-transformed composite parts that contain T7 promoter into these strains.
 +
                                        We co-transform plasmid that only contains LacI promoter into W3110.
 +
                                    </p>
 +
                                    <h5 class="question">How to prove our design?</h5>
 +
                                    <p class="pcontent">We designed a total solution test to verify the function of our whole construction.
 +
                                        We incubate the constructed strains in modified M9 medium that contains 4 (g/l) xylose as its sole carbon source.
 +
                                        The construction is designed to consume xylose as energy source and as a material for Calvin-Benson cycle.
 +
                                        We then measure the optical intensity (O.D. 600) to characterize the cell growth. At a fixed time interval,
 +
                                        we use DNS assay to measure the sugar consumption of the bacteria.
 +
                                        By comparing the experimental group to the control group,
 +
                                        we can prove that our engineered strain utilize carbon dioxide as its carbon source.
 +
                                    </p>
 +
                                </div>
 +
                                <div id="pH_sensing_system">
 +
                                    <h3>pH sensing system</h3>
 +
                                    <p class="pcontent">The pH sensing system, our side project,
 +
                                        is a system that allows us to monitor the pH in the surrounding medium
 +
                                        in our device at any time by observing the color change of the medium.
 +
                                    </p>
 +
                                    <p class="pcontent">We selected two pH sensitive promoter from <i>E. coli</i>:
 +
                                        P<sub>asr</sub> and P<sub>gadA</sub>. P<sub>gadA</sub> will be induced under neutral condition while P<sub>asr</sub> will be induced under acidic condition.
 +
                                        We cloned a GFP and sfGFP gene downstream of these promoters respectively, whose product will express green fluorescence once the promoter has been activated. For the design of P<sub>gadA</sub> sensing system, we took the previous constructed P<sub>gadA</sub> biobrick <a href="http://parts.igem.org/Part:BBa_K1962013"
 +
                                            style="color:#28ff28;">BBa_K1962013</a> from <a href="https://2016.igem.org/Team:Dundee"
 +
                                            style="color:#28ff28;">2016 iGEM Dundee team</a> as our reference. We also improve the P<sub>gadA</sub> biobrick to enhance the expression of GFP.
 +
                                    </p>
 +
                                    <p class="pcontent">In conclusion, when the color of the medium turns from turbid yellow to green,
 +
                                        it indicates the pH of the medium has altered so we can determine the pH condition of the medium.
 +
                                    </p>
 +
                                    <img class="gif" src="https://static.igem.org/mediawiki/2018/8/8e/T--NCKU_Tainan--design_pHsensor.gif" alt="pH">
 +
                                    <div class="row">
 +
                                        <a class="btn col-md-12" data-toggle="collapse" href="#pH_how_to_construct" role="button" aria-expanded="false" aria-controls="multiCollapseExample1">
 +
                                            How do we construct this part?
 +
                                            <i class="fa fa-arrow-down fa-10" aria-hidden="true"></i>
 +
                                        </a>
 +
                                    </div>   
 +
                                    <div class="collapse multi-collapse" id="pH_how_to_construct">
 +
                                        <div class="card card-body">
 +
                                            <p class="pcontent">We first extracted whole genome DNA from <i>E. coli</i> MG1655 and amplify both promoters by PCR
 +
                                                using primers that contains HindIII and SpeI.
 +
                                                We then exchanged the promoter with the previously constructed plasmid that contains P<sub>T7</sub> and GFP or sfGFP.
 +
                                                We initially transformed the constructed plasmid into DH5 alpha for colony screening.
 +
                                                We then transformed the plasmid into BL21 (DE3) to test its function.
 +
                                                We also design another biobrick that contains riboJ (a signal amplify fragment)
 +
                                                at the downstream of P<sub>gadA</sub> to get the signal more clearly and enhance the specificity.
 +
                                            </p> 
 +
                                        </div>
 +
                                    </div>
 +
                                    <img class="bigimg" src="https://static.igem.org/mediawiki/2018/d/d2/T--NCKU_Tainan--design_pH_construction.png" alt="pH alert system construction picture">
 +
                                    <h5 class="question">How do we determine its function?</h5>
 +
                                    <p class="pcontent">We measure the fluorescence intensity of the plasmid in different pH environment to
 +
                                        determine its promoter activity. We incubate the bacteria in pH modified M9 medium and
 +
                                        measure the fluorescence intensity (absorbance: 480 nm, excitation: 510 nm).
 +
                                    </p>
 +
                                </div>
 +
                                <div id="Reference">
 +
                                    <h3>References</h3>
 +
                                    <ol>
 +
                                        <li class="smallp">Z. Cai, G. Liu, J. Zhang, Protein Cell (2014) 5: 552.</li>
 +
                                        <li class="smallp">F. Gong, “Quantitative Analysis of an Engineered CO<sub>2</sub> -Fixing <i>Escherichia Coli</i> Reveals Great Potential of Heterotrophic CO<sub>2</sub> Fixation.” Biotechnology for Biofuels, BioMed Central, 18 June 2015</li>
 +
                                        <li class="smallp">“The Coupling of Glycolysis and the Rubisco-Based Pathway through the Non-Oxidative Pentose Phosphate Pathway to Achieve Low Carbon Dioxide Emission Fermentation.” NeuroImage, Academic Press, 25 Mar. 2015</li>
 +
                                        <li class="smallp">“Sugar Synthesis from CO<sub>2</sub> in <i>Escherichia Coli</i>.” NeuroImage, Academic Press, 23 June 2016</li>
 +
                                        <li class="smallp">H. Cheng, E. J. Yang, Y. L. Liu, F. Y.Chenm, Y. Ou, S. Y. Li. “The Comprehensive Profile of Fermentation Products during in Situ CO<sub>2</sub> Recycling by Rubisco-Based Engineered <i>Escherichia Coli</i>.” Microbial Cell Factories, BioMed Central, 2 Aug. 2016</li>
 +
                                    </ol>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
        <script>
 +
        $(document).ready(function() {
 +
          $(window).scroll(function() {
 +
            var scrollPercentage = (document.documentElement.scrollTop + document.body.scrollTop) / (document.documentElement.scrollHeight - document.documentElement.clientHeight);     
 +
            if(scrollPercentage >= 0.95) {
 +
              var position = $("#sidelist").position();
 +
              if(position == undefined){}
 +
              else{
 +
                $('#sidelist').css({"position": "fixed", "top": "85px"});
 +
              }
 +
            } else {
 +
              if ($(this).scrollTop() >= 500) {
 +
                var position = $("#sidelist").position();
 +
                  if(position == undefined){}
 +
                  else{
 +
                    $('#sidelist').css({"position": "fixed", "top": "145px", "margin-top": "0px"});
 +
                  }
 +
              } else {
 +
                $('#sidelist').removeAttr('style');
 +
              }
 +
            } 
 +
          });
 +
          $(function(){
 +
            $('i.fa-arrow-up').click(function(){
 +
            $('html, body').animate({scrollTop:0},600);
 +
              return false;
 +
            });
 +
          });
 +
        });
 +
        </script>
 +
        <script src="https://2018.igem.org/Team:NCKU_Tainan/js/frame/T--NCKU_Tainan--jquery-1_12_4_min_js?action=raw&amp;ctype=text/javascript"></script>
 +
        <script src="https://2018.igem.org/Template:NCKU_Tainan/js/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
 +
    </body>
 +
</html>
 +
{{NCKU_Tainan/footer}}

Latest revision as of 15:18, 3 November 2018

Design

Bring Solutions, Not Problems
Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)