Difference between revisions of "Team:HUST-China/Comparison between PSB"

 
(45 intermediate revisions by 4 users not shown)
Line 2: Line 2:
 
<head>
 
<head>
 
<meta charset="utf-8">
 
<meta charset="utf-8">
 +
<script language="javascript">
 +
<!-- 
 +
location.replace("https://2018.igem.org/Team:HUST-China/model_of_systems");
 +
-->
 +
</script>
 
<title>HillSide Multi purpose HTML5 Template</title>
 
<title>HillSide Multi purpose HTML5 Template</title>
 
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
 
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
Line 168: Line 173:
 
                           <ul class="dropdown-menu">
 
                           <ul class="dropdown-menu">
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Modeling overview">Modeling overview</a></li>
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Modeling overview">Modeling overview</a></li>
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Comparison between PSB">Comparison between PSB</a></li>
+
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/model_of_systems">Model of Systems</a></li>
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Sort of three genes">Sort of three genes</a></li>
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Sort of three genes">Sort of three genes</a></li>
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Software">Intelligent device software</a></li>  
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Software">Intelligent device software</a></li>  
Line 186: Line 191:
 
                           <a href="#" data-toggle="dropdown" class="dropdown-toggle waves-effect waves-dark">HP<b class="caret"></b></a>
 
                           <a href="#" data-toggle="dropdown" class="dropdown-toggle waves-effect waves-dark">HP<b class="caret"></b></a>
 
                           <ul class="dropdown-menu">
 
                           <ul class="dropdown-menu">
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Collaborations">Human Practices</a></li>
+
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Human_Practices">Human Practices</a></li>
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Education Engagement">Education&Engagement</a></li>  
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Education Engagement">Education&Engagement</a></li>  
 
                           </ul>
 
                           </ul>
Line 213: Line 218:
 
     <div class="row">
 
     <div class="row">
 
       <div class="col-lg-12">
 
       <div class="col-lg-12">
         <h2 class="pageTitle">Comparison_between_PSB</h2>
+
         <h2 class="pageTitle">Comparison between PSB</h2>
  
 
       </div>
 
       </div>
Line 222: Line 227:
 
   <section class="content">
 
   <section class="content">
 
   <div class="container">   
 
   <div class="container">   
 +
 +
                  <p>This page has been moved to <a href="https://2018.igem.org/Team:HUST-China/model_of_systems">"Model of Systems"</a> </p>
 +
<p>If your browser haven't jumped to that page automatically, please click the link above.</p>
 +
<p></p>
 +
<!--
 
         <div class="row">
 
         <div class="row">
 
             <div class="col-md-12 content-text">
 
             <div class="col-md-12 content-text">
 
                 <div class="about-logo">
 
                 <div class="about-logo">
                   <h3><strong>1. <span class="red-content">Abstract</span></strong></h3>
+
                   <h3><strong>Part1: <span class="red-content">Abstract</span></strong></h3>
 
                   <p>Modelling is a powerful tool in synthetic biology that allows us to get a deeper understanding of our system. In order to see whether our system can work and how our system will work, we build this model to simulate our system. This model shows us the details of our system and give our intelligent device software data so that we can change the environment to increase the efficiency and stability of Optopia.</p>
 
                   <p>Modelling is a powerful tool in synthetic biology that allows us to get a deeper understanding of our system. In order to see whether our system can work and how our system will work, we build this model to simulate our system. This model shows us the details of our system and give our intelligent device software data so that we can change the environment to increase the efficiency and stability of Optopia.</p>
 
               </div>
 
               </div>
Line 233: Line 243:
 
             <div class="col-md-12 content-text">
 
             <div class="col-md-12 content-text">
 
                 <div class="about-logo">
 
                 <div class="about-logo">
                   <h3><strong>2. <span class="red-content">Overview</span></strong></h3>
+
                   <h3><strong>Part2: <span class="red-content">Overview</span></strong></h3>
 
               </div>
 
               </div>
 
             </div>
 
             </div>
 
           </div>
 
           </div>
 
         <div class="row">
 
         <div class="row">
             <h3 style="text-indent: 2em;"><span class="red-content">functions</span></strong></h3>
+
              
 
             <div class="col-md-12 info-blocks">
 
             <div class="col-md-12 info-blocks">
 
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/8d/T--HUST-China--2018-lanzao01.png"></i>
 
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/8d/T--HUST-China--2018-lanzao01.png"></i>
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
                               <h3>1.<i>Synechocystis</i> </h3>
+
                               <h3><b>1.<i>Synechocystis</b></i> </h3>
                               <div  class="col-md-16" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/d/df/T--HUST-China--2018-model-new-c001.png"></div>
+
                               <div  class="col-md-16" > <img class="img-responsive" style="height:210px" src="https://static.igem.org/mediawiki/2018/d/df/T--HUST-China--2018-model-new-c001.png"></div>
 
                               <div class="col-md-12">
 
                               <div class="col-md-12">
                                 <p>These are the main differential equations of the Synechocystis part of the model. The parameters and variables above will be introduced below.</p>         
+
                                 <p>These are the main differential equations of the <i>Synechocystis</i> part of the model. The parameters and variables above will be introduced below.</p>         
 
                               </div>
 
                               </div>
 
                               <div  class="col-md-16" >  
 
                               <div  class="col-md-16" >  
                                 <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/8c/T--HUST-China--2018-model-new-c002.png">
+
                                 <img class="img-responsive" style="height:140px" src="https://static.igem.org/mediawiki/2018/8/8c/T--HUST-China--2018-model-new-c002.png">
 
                               </div>
 
                               </div>
 
                             <div class="col-md-12">
 
                             <div class="col-md-12">
                                 <p>These functions calculate the growth rate of Synechocystis. The two functions correspond to different concentrations of CO<sub>2</sub> in the solution.<img  style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/3/36/T--HUST-China--2018-model-new-c003.png">and<img  style="vertical-align:middle;height:60px" src="https://static.igem.org/mediawiki/2018/b/bf/T--HUST-China--2018-model-new-c004.png">make the growth rate decline when the concentration of CO<sub>2</sub> in the solution is too high or too low. (David et al. 2015)<sup>[1]</sup>. From the same reference we get the relationship between the light intensity and the growth rate. The function<img  style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/d/d8/T--HUST-China--2018-model-new-c005.png">is from another reference(XIONG et al. 2012) <sup>[2]</sup>. The parameter <img  style="vertical-align:middle;height:30px" src="https://static.igem.org/mediawiki/2018/0/0c/T--HUST-China--2018-model-new-c006.png"> the decline of the growth rate caused by gene editing. This parameter is introduced to make the growth model of wild Synechocystis fit to the growth of edited ones in the reference (Henrike et al. 2010)<sup>[3]</sup>.</p>
+
                                 <p>These functions calculate the growth rate of <i>Synechocystis</i>. The two functions correspond to different concentrations of CO<sub>2</sub> in the solution.<img  style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/3/36/T--HUST-China--2018-model-new-c003.png">and<img  style="vertical-align:middle;height:60px" src="https://static.igem.org/mediawiki/2018/b/bf/T--HUST-China--2018-model-new-c004.png">make the growth rate decline when the concentration of CO<sub>2</sub> in the solution is too high or too low. (David et al. 2015)<sup>[1]</sup>. From the same reference we get the relationship between the light intensity and the growth rate. The function<img  style="vertical-align:middle;height:40px" src="https://static.igem.org/mediawiki/2018/d/d8/T--HUST-China--2018-model-new-c005.png">is from another reference(XIONG et al. 2012) <sup>[2]</sup>. The parameter <img  style="vertical-align:middle;height:30px" src="https://static.igem.org/mediawiki/2018/0/0c/T--HUST-China--2018-model-new-c006.png"> the decline of the growth rate caused by gene editing. This parameter is introduced to make the growth model of wild <i>Synechocystis</i> fit to the growth of edited ones in the reference (Henrike et al. 2010)<sup>[3]</sup>.</p>
 
                               </div>
 
                               </div>
 
                               <div  class="col-md-16" >  
 
                               <div  class="col-md-16" >  
                                 <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/c/c4/T--HUST-China--2018-model-new-c007.png">
+
                                 <img class="img-responsive" style="height:70px" src="https://static.igem.org/mediawiki/2018/c/c4/T--HUST-China--2018-model-new-c007.png">
 
                               </div>
 
                               </div>
 
                               <div class="col-md-12">
 
                               <div class="col-md-12">
                                   <p>This stands for the CO<sub>2</sub> consumed by each unit of Synechocystis.<img  style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/c/cc/T--HUST-China--2018-model-new-c008.png">is used for growth,<img  style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/1/1d/T--HUST-China--2018-model-new-c009.png">is used for lactate producing, and <img  style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/c/cb/T--HUST-China--2018-model-new-c010.png"> is used for sustaining its life.</p>
+
                                   <p>This stands for the CO<sub>2</sub> consumed by each unit of <i>Synechocystis</i>.<img  style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/c/cc/T--HUST-China--2018-model-new-c008.png">is used for growth,<img  style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/1/1d/T--HUST-China--2018-model-new-c009.png">is used for lactate producing, and <img  style="vertical-align:middle;height:30px" src="https://static.igem.org/mediawiki/2018/c/cb/T--HUST-China--2018-model-new-c010.png"> is used for sustaining its life.</p>
 
                               </div>
 
                               </div>
 
                               <div  class="col-md-3" >  
 
                               <div  class="col-md-3" >  
                                 <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/2/26/T--HUST-China--2018-model-new-c011.png">
+
                                 <img class="img-responsive" style="height:70px" src="https://static.igem.org/mediawiki/2018/2/26/T--HUST-China--2018-model-new-c011.png">
 
                               </div>
 
                               </div>
 
                               <div class="col-md-12">
 
                               <div class="col-md-12">
                                   <p>The O<sub>2</sub> consuming is calculated by <img  style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/8/89/T--HUST-China--2018-model-new-c013.png"> because the photosynthesis and respiration in Synechocystis have the same stoichiometric ratio.</p>
+
                                   <p>The O<sub>2</sub> consuming is calculated by <img  style="vertical-align:middle;height:30px" src="https://static.igem.org/mediawiki/2018/8/89/T--HUST-China--2018-model-new-c013.png"> because the photosynthesis and respiration in <i>Synechocystis</i> have the same stoichiometric ratio.</p>
 
                               </div>
 
                               </div>
 
                               <div  class="col-md-6" >  
 
                               <div  class="col-md-6" >  
                                 <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/9/96/T--HUST-China--2018-model-new-c012.png">
+
                                 <img class="img-responsive" style="height:50px" src="https://static.igem.org/mediawiki/2018/9/96/T--HUST-China--2018-model-new-c012.png">
 
                               </div>
 
                               </div>
 
                               <div class="col-md-12">
 
                               <div class="col-md-12">
                                   <p>This function shows the inhibit of CO<sub>2</sub> to the metabolism of Synechocystis. The lack of carbon source will not only effect the growth rate of the bacteria, but also reduce the produce rate of lactate.</p>
+
                                   <p>This function shows the inhibit of CO<sub>2</sub> to the metabolism of <i>Synechocystis</i>. The lack of carbon source will not only effect the growth rate of the bacteria, but also reduce the produce rate of lactate.</p>
 
                               </div>
 
                               </div>
                                
+
                               <div class="row">
 +
            <div class="col-md-12 info-blocks">
 +
              <div class="col-md-10  col-md-offset-1">
 +
                      <table class="table table-bordered table-hover" style="text-align: center;">
 +
                            <tr>
 +
                              <th>Parameter</th>
 +
                              <th>Description</th>
 +
                              <th>Value</th>
 +
                              <th>Unit</th>
 +
                              <th>Source</th>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>q<sub>Lac,Synec</sub></td>
 +
                              <td>Lactate produced by each unit of Synechocystis.</td>
 +
                                <td>6.582×10<sup>-4</sup></td>
 +
                                <td>h<sup>-1</sup></td>
 +
                              <td>Fitting from reference <sup>[3]</sup></td>
 +
                            </tr>
 +
                          <tr>
 +
                              <td>Y<sub>CO<sub>2</sub>,Synec</sub></td>
 +
                              <td>Yield coefficient of Synechocystis related to CO<sub>2</sub> consuming, showing the CO<sub>2</sub> consumed for growth</td>
 +
                                <td>2.284×10<sup>2</sup></td>
 +
                                <td>1</td>
 +
                              <td>Fitting from reference <sup>[1]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>Y <sub>O<sub>2</sub>,CO<sub>2</sub></sub> </td>
 +
                              <td>O<sub>2</sub> producing coefficient related to CO<sub>2</sub> consuming.</td>
 +
                                <td>1.375</td>
 +
                                <td>1</td>
 +
                              <td>Calculated by the  stoichiometric in the chemical equation of the  photosynthesis and respiration in Synechocystis and relative molecular mass of O<sub>2</sub> and CO<sub>2</sub></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>Y<sub>CO<sub>2</sub>,Lac</sub></sub></td>
 +
                              <td>O<sub>2</sub> producing coefficient related to lactate consuming.</td>
 +
                                <td>6.818×10<sup>-1</sup></td>
 +
                                <td>1</td>
 +
                              <td>Calculated by the  stoichiometric in the chemical equation of lactate producing, and relative molecular mass of CO<sub>2</sub> and lactate</td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>m<sub>CO<sub>2</sub>,Synec</sub></td>
 +
                              <td>The sustain coefficient of Synechocystis. Stand for the CO<sub>2</sub> consuming by the unit dry weight of alive Synechocystis.</td>
 +
                                <td>1.164×10<sup>-1</sup></td>
 +
                                <td>h<sup>-1</sup></td>
 +
                              <td>Fitting from reference <sup>[1]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>μ<sub>max,Synec</sub></td>
 +
                              <td>The max growth rate of Synechocystis.</td>
 +
                                <td>5.210×10<sup>-2</sup></td>
 +
                                <td>h<sup>-1</sup></td>
 +
                              <td>Fitting from reference <sup>[1]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>k<sub>CO<sub>2</sub>,Synec,1</sub></td>
 +
                              <td>The semi-saturation constant of CO<sub>2</sub> concentration when it is low.</td>
 +
                                <td>3.551×10<sup>-6</sup></td>
 +
                                <td>g⋅L<sup>-1</sup></td>
 +
                              <td>Fitting from reference <sup>[1]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>k<sub>CO<sub>2</sub>,Synec,2</sub></td>
 +
                              <td>The semi-saturation constant of CO<sub>2</sub> concentration when it is high</td>
 +
                                <td>7.788×10<sup>-2</sup></td>
 +
                                <td>g⋅L<sup>-1</sup></td>
 +
                              <td>Fitting from reference <sup>[1]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>c<sub>l,CO<sub>2</sub></sub></td>
 +
                              <td>The critical value of CO<sub>2</sub> concentration. Different formulas are applied when CO<sub>2</sub> concentration in the solution is above or below this value. </td>
 +
                                <td>7.788×10<sup>-2</sup></td>
 +
                                <td>g⋅L<sup>-1</sup></td>
 +
                              <td>Fitting from reference <sup>[1]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>c<sub>max,Synec</sub></td>
 +
                              <td>The max concertation of Synechocystis in the solution.</td>
 +
                                <td>3.160×10<sup>-1</sup></td>
 +
                                <td>g⋅L<sup>-1</sup></td>
 +
                              <td>Fitting from reference <sup>[1]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>I<sub>k,Synec</sub></td>
 +
                              <td>The light intensity constant of Synechocystis while the light intensity is lower than 8000Lux</td>
 +
                                <td>8.749×10<sup>2</sup></td>
 +
                                <td>Lux</td>
 +
                              <td>Fitting from reference <sup>[1]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>k<sub>decline</sub></td>
 +
                              <td>The decline caused by the gene editing.</td>
 +
                                <td>4.209×10<sup>-1</sup></td>
 +
                                <td>1</td>
 +
                              <td>Fitting from reference <sup>[1]</sup></td>
 +
                            </tr>
 +
                         
 +
                      </table>
 +
                  </div>
 +
                </div>
 +
              </div>
 
    
 
    
 
                         </div>
 
                         </div>
Line 281: Line 390:
 
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/6/63/T--HUST-China--2018-zhaozehong01.png"></i>
 
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/6/63/T--HUST-China--2018-zhaozehong01.png"></i>
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
                               <h3>2.Rhodopseudomonas palustris</h3>
+
                               <h3><b>2.<i>Rhodopseudomonas palustris</i></b></h3>
 
                               <div  class="col-md-8">  
 
                               <div  class="col-md-8">  
                                   <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/9/92/T--HUST-China--2018-model-new-r001.png">
+
                                   <img class="img-responsive" style="height:160px" src="https://static.igem.org/mediawiki/2018/9/92/T--HUST-China--2018-model-new-r001.png">
 
                               </div>
 
                               </div>
 
                               <div class="col-md-12">   
 
                               <div class="col-md-12">   
                                 <p>These are the main differential equations about the modeling  part of the <I>Rhodopseudomonas palustris</I> (abbreviated as “Rps”). Through these differential equations, we can calculate the concentrations of Rps, carbon dioxide and lactate. The parameters and variables above will be introduced below.This part is similar to that of <I>Synechocystis</I>, because in our experiment, they are both used to provide lactate to <I>Shewanella</I> and have similar genetic modification.</p>
+
                                 <p>These are the main differential equations about the modeling  part of the <I><i>Rhodopseudomonas palustris</i></I> (abbreviated as “Rps”). Through these differential equations, we can calculate the concentrations of Rps, carbon dioxide and lactate. The parameters and variables above will be introduced below.This part is similar to that of <I><i>Synechocystis</i></I>, because in our experiment, they are both used to provide lactate to <I><i>Shewanella</i></I> and have similar genetic modification.</p>
                               </div>
+
                               </div><div  class="col-md-8" > <img class="img-responsive" style="height:70px" src="https://static.igem.org/mediawiki/2018/7/7e/T--HUST-China--2018-model-new-r003.png">
                              <div  class="col-md-8" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/1/11/T--HUST-China--2018-model-new-r002.png">
+
 
                               </div>
 
                               </div>
 
                           <div class="col-md-12">           
 
                           <div class="col-md-12">           
                               <p>The function calculates the growth rate of Rhodopseudomonas palustris. The function corresponds to different concentrations of CO<sub>2</sub> in the solution.<img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/7/7e/T--HUST-China--2018-model-new-r003.png"> makes the growth rate decline when the  concentration of CO<sub>2</sub> in the solution is too high. This is gotten from the reference (David et al. 2015)<sup>[1]</sup>.</p>
+
                               <p>The function calculates the growth rate of <i>Rhodopseudomonas palustris</i>. The function corresponds to different concentrations of CO<sub>2</sub> in the solution.<img style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/8/80/T--HUST-China--2018-model-new-r004.png"> makes the growth rate decline when the  concentration of CO<sub>2</sub> in the solution is too high. This is gotten from the reference (David et al. 2015)<sup>[1]</sup>.</p>
 
                           </div>
 
                           </div>
 
                           <div class="col-md-12">           
 
                           <div class="col-md-12">           
 
                               <p>From the same reference we get the relationship between the light intensity and the growth rate. The function</p>
 
                               <p>From the same reference we get the relationship between the light intensity and the growth rate. The function</p>
 
                           </div>
 
                           </div>
                           <div  class="col-md-3 col-md-offset-2" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/80/T--HUST-China--2018-model-new-r004.png">
+
                           <div  class="col-md-3" > <img class="img-responsive" style="height:60px" src="https://static.igem.org/mediawiki/2018/d/d4/T--HUST-China--2018-model-new-r005.png">
 
                           </div>
 
                           </div>
 
                           <div class="col-md-12">           
 
                           <div class="col-md-12">           
                               <p>is from another reference (Xiong et al. 2012)<sup>[2]</sup>. The parameter  <img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/d/d4/T--HUST-China--2018-model-new-r005.png"> the decline of the growth rate caused by gene editing. This parameter is introduced to make the growth model of wild <I>Rhodopseudomonas palustris</I> fit to the growth of edited ones in the reference ( Henrike et al. 2012 )<sup>[3]</sup>.</p>
+
                               <p>is from another reference (Xiong et al. 2012)<sup>[2]</sup>. The parameter  <img style="vertical-align:middle;height:30px" src="https://static.igem.org/mediawiki/2018/0/0c/T--HUST-China--2018-model-new-c006.png"> the decline of the growth rate caused by gene editing. This parameter is introduced to make the growth model of wild <I><i>Rhodopseudomonas palustris</i></I> fit to the growth of edited ones in the reference ( Henrike et al. 2012 )<sup>[3]</sup>.</p>
 
                           </div>
 
                           </div>
                           <div  class="col-md-6 col-md-offset-2" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/1/19/T--HUST-China--2018-model-new-r006.png">
+
                           <div  class="col-md-6"> <img class="img-responsive" style="height:70px" src="https://static.igem.org/mediawiki/2018/1/19/T--HUST-China--2018-model-new-r006.png">
 
                           </div>
 
                           </div>
 
                           <div class="col-md-12">           
 
                           <div class="col-md-12">           
                               <p>This stands for the CO2 consumed by each unit of Rhodopseudomonas palustris. <img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/d/d7/T--HUST-China--2018-model-new-r007.png"> is  used for growth, <img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/6/64/T--HUST-China--2018-model-new-r008.png"> is used for lactate producing, and  <img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/d/d3/T--HUST-China--2018-model-new-r009.png"> used for sustaining its life.</p>
+
                               <p>This stands for the CO<sub>2</sub> consumed by each unit of <i>Rhodopseudomonas palustris</i>. <img style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/d/d7/T--HUST-China--2018-model-new-r007.png"> is  used for growth, <img style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/6/64/T--HUST-China--2018-model-new-r008.png"> is used for lactate producing, and  <img style="vertical-align:middle;height:30px" src="https://static.igem.org/mediawiki/2018/d/d3/T--HUST-China--2018-model-new-r009.png"> used for sustaining its life.</p>
 
                           </div>
 
                           </div>
                           <div  class="col-md-4 col-md-offset-2" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/c/c7/T--HUST-China--2018-model-new-r010.png">
+
                           <div  class="col-md-4" > <img class="img-responsive" style="height:60px" src="https://static.igem.org/mediawiki/2018/c/c7/T--HUST-China--2018-model-new-r010.png">
 
                           </div>
 
                           </div>
 
                           <div class="col-md-12">           
 
                           <div class="col-md-12">           
                               <p>This function shows the inhibit of CO<sub>2</sub> to the metabolism of <I>Rhodopseudomonas palustris</I>. The lack of carbon source will not only impact the growth rate of the bacteria, but also reduce the production rate of lactate.</p>
+
                               <p>This function shows the inhibit of CO<sub>2</sub> to the metabolism of <I><i>Rhodopseudomonas palustris</i></I>. The lack of carbon source will not only impact the growth rate of the bacteria, but also reduce the production rate of lactate.</p>
 
                           </div>
 
                           </div>
 
                          
 
                          
 +
 +
                          <div class="row">
 +
            <div class="col-md-12 info-blocks">
 +
              <div class="col-md-10  col-md-offset-1">
 +
                      <table class="table table-bordered table-hover" style="text-align: center;">
 +
   
 +
                            <tr>
 +
                              <th>Parameter</th>
 +
                              <th>Description</th>
 +
                              <th>Value</th>
 +
                              <th>Unit</th>
 +
                              <th>Source</th>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>q<sub>Lac,Rps</sub></td>
 +
                              <td>Lactate produced by each unit of Rps per hour</td>
 +
                                <td>6.784×10<sup>-4</sup></td>
 +
                                <td>h<sup>-1</sup></td>
 +
                              <td>In this experiment, due to genetic modification, no correlation coefficient was found,so we run the simulation in a large range of parameters for many times and use the best data.</td>
 +
                            </tr>
 +
                          <tr>
 +
                              <td>μ<sub>max,Rps</sub></td>
 +
                              <td>Maximum growth rate of Rps per hour</td>
 +
                                <td>0.332</td>
 +
                                <td>h<sup>-1</sup></td>
 +
                              <td>Fitting from reference <sup>[4]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>k<sub>CO<sub>2</sub>,Rps</sub></td>
 +
                              <td>Yield coefficient of Rps</td>
 +
                                <td>4.124×10<sup>-6</sup></td>
 +
                                <td>g⋅L<sup>-1</sup></td>
 +
                              <td>Fitting from reference <sup>[5]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>I<sub>k,Rps</sub></td>
 +
                              <td>The light intensity constant of Rps while the light intensity is lower than 8000Lux</td>
 +
                                <td>8.892×10<sup>2</sup></td>
 +
                                <td>Lux</td>
 +
                              <td>Fitting from reference <sup>[6]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>Y<sub>CO<sub>2</sub>,Rps</sub></td>
 +
                              <td>CO<sub>2</sub> producing coefficient related to lactate consuming.</td>
 +
                                <td>2.340×10<sup>2</sup></td>
 +
                                <td>1</sup></td>
 +
                              <td>Fitting from reference <sup>[5]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>q<sub>Lac,Rps</sub></td>
 +
                              <td>Lactate produced by each unit of Rps.</td>
 +
                                <td>6.784×10<sup>-4</sup></td>
 +
                                <td>h<sup>-1</sup></td>
 +
                              <td>Fitting from reference <sup>[7]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>Y<sub>CO<sub>2</sub>,Lac</sub></td>
 +
                              <td>Yield coefficient of Rps related to CO<sub>2</sub> consuming, showing the CO<sub>2</sub> consumed for growth</td>
 +
                                <td>0.6921</td>
 +
                                <td>1</td>
 +
                              <td>Calculated by the  stoichiometric in the chemical equation of lactate producing, and relative molecular mass of CO<sub>2</sub> and lactate</td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>m<sub>CO<sub>2</sub>,Rps</sub></td>
 +
                              <td>The sustain coefficient of Rps. Stand for the CO<sub>2</sub> consuming by the unit dry weight of alive Rps.</td>
 +
                                <td>0.1524</td>
 +
                                <td>h<sup>-1</sup></td>
 +
                              <td>Fitting from reference <sup>[5]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>k<sub>decline</sub></td>
 +
                              <td>The decline caused by the gene editing.</td>
 +
                                <td>0.4209</td>
 +
                                <td>1</td>
 +
                              <td>Fitting from reference <sup>[6]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>c<sub>max,Rps</sub></td>
 +
                              <td>The max concertation of Rps in the solution.</td>
 +
                                <td>0.5211</td>
 +
                                <td>g⋅L<sup>-1</sup></td>
 +
                              <td>Fitting from reference <sup>[7]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>k<sub>s,met</sub></td>
 +
                              <td>the inhibition coefficient  of CO<sub>2</sub> to the metabolism of Rhodopseudomonas palustris </td>
 +
                                <td>0.122</td>
 +
                                <td>g⋅L<sup>-1</sup></td>
 +
                              <td>Fitting from reference <sup>[5]</sup></td>
 +
                            </tr>
 +
                           
 +
                         
 +
                      </table>
 +
                  </div>
 +
                </div>
 +
              </div>
 
                   </div>
 
                   </div>
 
               </div>
 
               </div>
Line 317: Line 521:
 
           <div class="row">
 
           <div class="row">
 
             <div class="col-md-12 info-blocks">
 
             <div class="col-md-12 info-blocks">
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/0/0c/T--HUST-China--2018-xiwa01.png"></i>
+
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" style="height:60" src="https://static.igem.org/mediawiki/2018/0/0c/T--HUST-China--2018-xiwa01.png"></i>
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
                         <h3>3. Shewanella oneidensis</h3>
+
                         <h3><b>3. <i>Shewanella</b></i></h3>
                         <p>In generate, the three elements urgently needed to be modeled in Shewanella are the changes in biomass (Dry Weight, g/L), electricity production (mV), and lactate content (g/L) over time. Once the Shewanella modeling is completed, we only need to combine the model of Shewanella with the model of Cyanobacteria or Rhodopseudomonas palustris to determine which one is better to facilitate electricity produce. The process of deduction will write blow:</p>
+
                         <p>In generate, the three elements urgently needed to be modeled in <i>Shewanella</i> are the changes in biomass (Dry Weight, g/L), electricity production (mV), and lactate content (g/L) over time. Once the <i>Shewanella</i> modeling is completed, we only need to combine the model of <i>Shewanella</i> with the model of <i>Synechocystis</i> or <i>Rhodopseudomonas palustris</i> to determine which one is better to facilitate electricity produce. The process of deduction will write blow:</p>
 
                         <p>First, we need to simulate biomass function. Our biomass function is based on monod equation:</p>
 
                         <p>First, we need to simulate biomass function. Our biomass function is based on monod equation:</p>
                         <div class="col-md-5 col-md-offset-2" style="text-align: center;">
+
                         <div class="col-md-5" style="text-align: center;">
                             <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/9/9b/T--HUST-China--2018-model-PSD20.png">
+
                             <img class="img-responsive" style="height:30px" src="https://static.igem.org/mediawiki/2018/c/c9/T--HUST-China--2018-model-new-s001.png">
 
                         </div>
 
                         </div>
 
                         <div class="col-md-12">
 
                         <div class="col-md-12">
                               <p>In this function, μ<sub>Shewa</sub> is specific growth rate of biomass. </p>
+
                               <p>In this function, μ is specific growth rate of biomass. </p>
 
                               <p>Because there are two important growth factors in our model: lactate and oxygen content, we need some modifying tasks in this model. Noticing that the concentration of oxygen and lactate are both promoting biomass growth, with the inspiration of monod equation, we take the two factors into consideration so the function changes to:</p>
 
                               <p>Because there are two important growth factors in our model: lactate and oxygen content, we need some modifying tasks in this model. Noticing that the concentration of oxygen and lactate are both promoting biomass growth, with the inspiration of monod equation, we take the two factors into consideration so the function changes to:</p>
 
                       </div>       
 
                       </div>       
                             <div class="col-md-8 col-md-offset-2" style="text-align: center;">
+
                             <div class="col-md-8">
                             <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/0/09/T--HUST-China--2018-model-PSD21.png">
+
                             <img class="img-responsive" style="height:60px" src="https://static.igem.org/mediawiki/2018/6/69/T--HUST-China--2018-model-new-s002.png">
 
                         </div>
 
                         </div>
 
                         <div class="col-md-12">
 
                         <div class="col-md-12">
 
                                
 
                                
                                 <p>Shewanella oneidensis MR-1 prefers to use lactate as its carbon source since the amount of lactate-based biomass is more than acetate-based biomass or pyruvate-based biomass. Dld and lldEFG are D- and L-lactate dehydrogenase enzymes, which is the first step of utilizing lactate. To make the use of lactate more efficiently, we overexpress four genes: dld, lldE, lldF, lldG.[10]</p>
+
                                 <p>In this function, c<sub>Lac</sub> is concentration of lactate.</p>
                                <p>①. dld: dld refers to FAD-dependent D-lactate dehydrogenase which could catalyze D-lactate’s transformation into pyruvate. </p>
+
                                <p>After this, we realized that a factor about oxygen competition is needed to add in the function. So we import a parameter to solve this problem, the function is modified to:</p>
                                  <p>②. lldEFG: They could encode a L-lactate dehydrogenase complex which could catalyze D-lactate’s transformation into pyruvate. </p>
+
                                 <div class="col-md-8" style="text-align: center;">
                                    <p>To ensure that the genes would be expressed efficiently, we add a promoter before lldEFG:</p>
+
                             <img class="img-responsive" style="height:60px" src="https://static.igem.org/mediawiki/2018/2/2f/T--HUST-China--2018-model-new-s003.png">
                                  
+
                             
+
                            </div>     
+
                            <div class="col-md-6 col-md-offset-2" style="text-align: center;">
+
                             <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/e/e5/T--HUST-China--2018-description-picture9.png.png">
+
 
                         </div>
 
                         </div>
                          <div class="col-md-12">
+
                        <div class="col-md-8">
 +
                            <img class="img-responsive" style="height:60px" src="https://static.igem.org/mediawiki/2018/8/85/T--HUST-China--2018-model-new-s004.png">
 +
                        </div>
 +
                              <div class="col-md-12">
 
                                
 
                                
                                 <p>NADH is a significant part of extracellular electron transfer(EET) as it could carry electron. Strenghthening the regeneration of NADH would make EET more efficiently.</p>
+
                                 <p>Taking the efficiency ratio of aerobic and anaerobic respiration (19:1) into consideration, we calculated two parameters:</p>
                                <p>To achieve this goal, we overexpress these four genes: gapA2, mdh, pflB, fdh. [11] </p>
+
<img class="img-responsive" style="height:90px" src="https://static.igem.org/mediawiki/2018/6/6f/T--HUST-China--2018-model-new-s015.png">
                                  <p>①. gapA: It encodes glyceraldehyde-3-phosphate dehydrogenase which could transform 3- phosphoglyceraldehyde into 1,3- diphosphoglycerate. </p>
+
                                <p>The two parameters are used in our electricity production simulation: </p>
                                    <p>②. mdh: It encodes NAD dependent malate dehydrogenase which transforms malate into pyruvate</p>
+
                                <p>The basic function is the famous Nernst equation: </p>
                                    <p>③. pflB: It encodes pyruvate formate-lyase to transform pyruvate into Acetyl-CoA.</p>
+
<img class="img-responsive" style="height:70px" src="https://static.igem.org/mediawiki/2018/0/0c/T--HUST-China--2018-model-new-s017.png">
                                    <p>④. fdh: It encodes formate dehydrogenase to transform formate into CO2..</p>
+
                                <p>In this function Ox is oxidized type, and Red is reduced type.</p>
                                    <p>Also, to ensure that the genes would be expressed efficiently, we add an promoter before pflB and fdh:</p>
+
                                <p>The Nernst equation is very clear and easy to use, but we have to add a <i>Shewanella</i> biomass factor to show the macroscopic electricity production. The lactic consuming value is closely related to the concentration of <i>Shewanella</i>. In addition, after the metabolic analysis of lactic in <i>Shewanella</i>, we promoted the function by modifying (or simplifying) the <img style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/7/78/T--HUST-China--2018-model-new-s005.png">  section. As a result, the electricity production function is:</p>
                                </div>
+
                                <div class="col-md-6 col-md-offset-2" style="text-align: center;">
+
                            <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/a/a0/T--HUST-China--2018-description-picture10.png.png">
+
 
                         </div>
 
                         </div>
 +
                                <div class="col-md-8">
 +
                            <img class="img-responsive" style="height:80px" src="https://static.igem.org/mediawiki/2018/e/ec/T--HUST-China--2018-model-new-s006.png">
 +
                        </div>
 +
                              <div class="col-md-12">
 +
<p>In this function,<img style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/a/a5/T--HUST-China--2018-model-new-s007.png"></p>
 +
<p>The last work in <i>Shewanella</i> modeling is the lactic consuming simulation: </p>
 +
<p>The concentration of lactate dominates largely on electricity production. Similarly, with the inspiration of Monod equation, we notice that the concentration of lactate acid and <i>Shewanella</i> itself is in a positive correlation to lactic consuming rate. So we have summarized the lactic consuming equation:</p>
 +
<img class="img-responsive" style="height:60px" src="https://static.igem.org/mediawiki/2018/6/67/T--HUST-China--2018-model-new-s008.png">
 +
                            </div>     
  
 
+
              </div>
 +
              <div class="row">
 +
            <div class="col-md-12 info-blocks">
 +
              <div class="col-md-10  col-md-offset-1">
 +
                      <table class="table table-bordered table-hover" style="text-align: center;">
 +
   
 +
                            <tr>
 +
                              <th>Parameter</th>
 +
                              <th>Description</th>
 +
                              <th>Value</th>
 +
                              <th>Unit</th>
 +
                              <th>Source</th>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>μ<sub>Shewa,max</sub></td>
 +
                              <td>maximum specific growth rate of biomass</td>
 +
                                <td>1.192×10<sup>-1</sup></td>
 +
                                <td>g/(L·h)</td>
 +
                              <td>Fitting from reference <sup>[8]</sup></td>
 +
                            </tr>
 +
                          <tr>
 +
                              <td>c<sub>Shewa,max</sub></td>
 +
                              <td>maximum biomass (dry weight) of Shewanella <sup>[8]</sup>  ——Li F et al. 2018, 7</td>
 +
                                <td>1.531×10<sup>-3</sup></td>
 +
                                <td>g/L</td>
 +
                              <td>Fitting from reference <sup>[4]</sup></td>
 +
                            </tr>
 +
                           
 +
                            <tr>
 +
                              <td>k<sub>Shewa,O<sub>2</sub></sub> </td>
 +
                              <td>a parameter influencing the relationship between substances and biomass</td>
 +
                                <td>1.332×10<sup>-5</sup></td>
 +
                                <td>g/L</td>
 +
                              <td>Fitting from reference <sup>[9]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>k<sub>Shewa,Lac</sub></td>
 +
                              <td>a parameter influencing the relationship between substances and biomass</td>
 +
                                <td>4.869×10<sup>-1</sup></td>
 +
                                <td>1</sup></td>
 +
                              <td>Fitting from reference <sup>[5]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>k<sub>Shewa,1</sub></</td>
 +
                              <td>correction term regarding the rate of consumption of lactate</td>
 +
                                <td>7.325×10<sup>1</sup></td>
 +
                                <td>-</td>
 +
                              <td>Fitting from reference <sup>[9]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>k<sup>'</sup><sub>Shewa,2</sub></td>
 +
                              <td>simplified coefficient about the Nernst equation</td>
 +
                                <td>1.235×10<sup>-1</sup></td>
 +
                                <td>-</td>
 +
                              <td>Fitting from reference <sup>[9]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>T</td>
 +
                              <td>current temperature</td>
 +
                                <td>298</td>
 +
                                <td>K</td>
 +
                              <td>Experiment data</td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>v<sub>Shewa,max</sub></td>
 +
                              <td>maximum lactate consumption rate per unit biomass</td>
 +
                                <td>7.012×10<sup>-1</sup></td>
 +
                                <td>g/(L·h)</td>
 +
                              <td>Fitting from reference <sup>[9]</sup></td>
 +
                            </tr>
 +
                            <tr>
 +
                              <td>k<sub>Shewa,3</sub></td>
 +
                              <td>constant value about lactate consuming</td>
 +
                                <td>3.056×10<sup>-1</sup></td>
 +
                                <td>g/L</td>
 +
                              <td>Fitting from reference <sup>[9]</sup></td>
 +
                            </tr>
 +
                           
 +
                      </table>
 +
                  </div>
 +
                </div>
 
               </div>
 
               </div>
 
             </div>
 
             </div>
Line 366: Line 654:
 
               <div class="col-md-12 content-text">
 
               <div class="col-md-12 content-text">
 
                   <div class="about-logo">
 
                   <div class="about-logo">
                     <h3><strong>Part3: <span class="red-content">Whole design</span></strong></h3>
+
                     <h3><strong>Part3: <span class="red-content">Result</span></strong></h3>
 
                   </div>
 
                   </div>
 
               </div>
 
               </div>
Line 374: Line 662:
 
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/9/98/T--HUST-China--2018-coin17.png"></i>
 
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/9/98/T--HUST-China--2018-coin17.png"></i>
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
                        <h3>Design of MFC</h3>
+
                     
                         <p>We have designed a bipolar chamber MFC this year. Proton exchange membrane divided it into anode chamber and cathode chamber. Anode chamber containing S.oneidensis, nutrient substance(LB、lactate ) or other electrical producing microbes were sealed to prevent the entry of external oxygen. Considering safety and oxidation-reduction potential, we put ferric chloride solution in cathode chamber so that S.oneidensis can transfer electrons outside of their membranes by electron transport chain. Then electrons will reduce ferric ion into ferrous through carbon cloth and produce electricity.We recorded open circuit voltage curve and load voltage curve of MFCs in each different systems. Also, we have measured the biomass of each system in order to ensure whether the improved electricity could be attributed to more attached Shewanella cells on the anodes or the higher electroactivity of single cell.[11] </p>
+
                         <p>
                        <div class="col-md-6 col-md-offset-2" style="text-align: center;">
+
                          The voltage output of the three systems (Rhodopseudomonas palustris- Shewanella, Synechocystis - Shewanella and Shewanella only) are shown in the following figure:
                            <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/85/T--HUST-China--2018-description-picture12.png.png">
+
                        </p>
                        </div>
+
                        <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/archive/9/92/20181017203446%21T--HUST-China--2018-psb-pic10086.png">
                        <div class="col-md-12">
+
                        <p>
                              <p class="red-content"><strong>Co-culture</strong></p>
+
                          The figure shows that because Rhodopseudomonas palustris  and Synechocystis can produce lactate, these two systems can produce electricity more efficiently and steadily, which demonstrates the value and feasibility of our project. In the beginning of the Synechocystis-Shewanella system, oxygen produced by Synechocystis inhibited the electricity production of Shewanella, so this system doesn’t have peak value.
                                <p>Obviously, the ecological relationship between microorganisms is very complex. There is not only the competition between them for the nutrient, but also the regulation of metabolites among them including induction, transgenosis and synergistic metabolism. Besides, it has been found that the co-culture of microorganisms can improve the electric efficiency of Microbial Fuel Cell under certain conditions.  </p>
+
                        </p>
                                <p>Metabolites exchange is a common relationship in co-culturing. Therefore, we have designed a clear microbial metabolic pathway to achieve the conversion from light to electricity as well as used more potential symbiotic relationships between the flora to help improve the electricity production efficiency of MFC.</p>
+
                        After molecular engineering, we get experiment data. It can fit our model result well. This demonstrates our model is right, so we can design a software based on model to tell us a better application experiment protocol which can get better result.
                                  <p>By consulting literature, we found two kinds of microorganisms——Cyanobacteria and Rhodopseudomonas palustris, both of which can utilize light energy and provide lactate to S.oneidensis after doing molecular construction.  </p>
+
                        <p>
                                    <p>In order to provide a basic growth environment, we mix the culture medium of different strains.(Please refer to our protocol section for the composition of the mediums.)</p>
+
                         
                               
+
                        </p>
                             
+
                   
                            </div>     
+
                     
                           
+
                   
                        <div class="col-md-12">
+
                                <p class="red-content"><strong>Synechocystis PCC6803</strong></p>
+
                                <p>Lactate produced by Synechocystis PCC6803 can be used as the optimal carbon source for Shewanella. At the same time, acetate produced by Shewanella can be used as the organic carbon source of Synechocystis PCC6803 to increase the lactate production. And the metabolite exchange of Synechocystis PCC6803 and Shewanella is the basis for our photoautotrophic MFC.[12]. </p>
+
                                  <p class="red-content"><strong>Rhodopseudomonas palustris</strong></p>
+
                                    <p>We attempted to engineer Rhodopseudomonas palustris by synthetic biology to achieve the same or a better function of Synechococcus elongatus.</p>
+
                                    <p>In the preliminary experiment, we found that there may be more potential interactions in the co-culture of Rhodopseudomonas palustris and Shewanella, which can greatly improve the coulombic efficiency of our MFC (please refer our results section for more detials). This is an unexpected surprise for us, which improve to our confidence in the success of the project.</p>
+
                            </div>    
+
 
                   </div>
 
                   </div>
 
                 </div>
 
                 </div>
 
               </div>
 
               </div>
 +
              <div class="row">
 +
              <div class="col-md-12 content-text">
 +
                  <div class="about-logo">
 +
                    <h3><strong>Part4: <span class="red-content">Disscussion</span></strong></h3>
 +
                  </div>
 +
              </div>
 +
          </div>
 +
          <div class="row">
 +
            <div class="col-md-12 info-blocks">
 +
                <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/9/98/T--HUST-China--2018-coin17.png"></i>
 +
                      <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
 +
                     
 +
                        <p>
 +
                        Based the insight we have gained from modeling, we find that concentration of carbon dioxide is the major limitation of Synechocystis-Shewanella system. Because low concentration of carbon dioxide will limit photosynthesis of Synechocystis, producing less lactate. Finally it leads to low electricity production. (Rhodopseudomonas can utilize the metabolic waste of Shewanella, so it need less carbon dioxide) Therefore, we add carbon dioxide to system and find that it can improve the electricity production. However, if we add too much carbon dioxide, the production will decrease, because excess carbon dioxide will inhibit the photosynthesis. (David et al. 2015)[1]1Finally, we find that the system has the highest voltage output when we add carbon dioxide 2.103*〖10〗^(-4)  g⁄*h.
 +
                        </p>
 +
                        <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/9/92/T--HUST-China--2018-psb-pic10086.png">
 +
                        </div>
 +
                      </div>
 +
                    </div>
  
 
     <div class="row">
 
     <div class="row">
Line 404: Line 704:
 
             <div class="about-logo">
 
             <div class="about-logo">
 
                 <h4><strong>Reference </strong></h4>
 
                 <h4><strong>Reference </strong></h4>
                <p style="font-size:12px;">[1]Henrike Niederholtmeyer, Bernd T. Wolfstädter, David F. Savage, Pamela A. Silver, Jeffrey C. Way. Engineering Cyanobacteria to Synthesize and Export Hydrophilic Products. Applied and Environmental Microbiology. 2010, 76(11): 3462-3466.</p>
+
                  <p style="font-size:12px;">[1]David Kuan, Sheldon Duff, Dusko Posarac, et al. Growth Optimization of Synechococcus elongatus PCC7942 In Lab Flasks and a 2-D Photobioreactor[J]. Can. J. Chem. Eng., 2015, 9999: 1–8</p>
                <p style="font-size:12px;"><span>[2] 《沼泽红假单胞菌的研究进展及其应用》王跃先、刘德海</span></p>
+
                  <p style="font-size:12px;"><span>[2]XIONG Wen, QIAN Xin, YE Rui, et al. Eco-model based analysis of Lake Taihu cyanobacteria growth factors[J]. Lake Science, 2012, 24( 5) : 698-704</span></p>
                <p style="font-size:12px;"><span>[3] 周茂洪 赵肖为 吴雪昌《光合细菌沼泽红假单胞菌同化磷能力的研究》 《科技通报》2002年 第2期 142-146页</span></p>
+
                  <p style="font-size:12px;"><span>[3]Henrike Niederholtmeyer, Bernd T. Wolfstädter,  David F. Savage, et al. Engineering Cyanobacteria To Synthesize and Export Hydrophilic Products[J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, June 2010, 76(11): 3462–3466</span></p>
                <p style="font-size:12px;"><span>[4] KEGG, https://www.genome.jp/kegg/pathway.html</span></p>
+
                  <p style="font-size:12px;"><span>[4]Song Zhiyong, Qu Yuanyuan, Zhou Jiti, et al. Identification of wild plasmids in Rhodopseudomonas palustris by reverse PCR [J]. Journal of Dalian University of Technology, 2009,01: 33-37</span></p>
                <p style="font-size:12px; "><span>[5] Cloning and sequence analysis of the gene encoding Lactococcus lactis malolactic enzyme: relationships with malic enzymes FEMS Microbiol Lett. 1994 Feb 1;116(1):79-86 </span></p>
+
                  <p style="font-size:12px; "><span>[5] Cuihong Du.Cloning and Expression of RubisCO Gene from Rhodopseudomonas palustris and Its Characteristics of Fixed Carbon Dioxide[D].Dalian University of Technology,2003. DOI:10.7666/d.y665688.</span></p>
                <p style="font-size:12px; "><span>[6] Fine tuning the transcription of ldhA for d-lactate production August 2012, Volume 39, Issue 8, pp 1209–1217 </span></p>
+
                  <p style="font-size:12px; "><span>[6]Linghua Zhang,Zheshi Kuang,Wei Chen, et al.Preliminary study on culture characteristics of high activity photosynthetic bacteria Rhodopseudomonas palustris[J].Journal of South China Normal University(Natural science edition),2001,(4):37-39. DOI:10.3969/j.issn.1000-5463.2001.04.008.</span></p>
                <p style="font-size:12px; "><span>[7] Transport of L-Lactate, D-Lactate, and Glycolate by the LldP and GlcA Membrane Carriers of Escherichia coli Volume 290, Issue 2, 18 January 2002, Pages 824-829 </span></p>
+
                  <p style="font-size:12px; "><span>[7] Huinong Cai,HuiNi,Wenjin Su.Optimization of Culture Media of Rhodopseudomonas palustris and Effect of Ammonia Reduction[J].Journal of Jimei University (Natural Science Edition),2007,(3). </span></p>
                <p style="font-size:12px; "><span>[8] Enhancement of Hydrogen Production and Carbon Fixation in Purple Nonsulfur Bacterium Bacterium by Synthetic Biology Shou-Chen Lo</span></p>
+
                  <p style="font-size:12px; "><span>[8]. Li F, Li Y, Sun L M, et al. Modular engineering intracellular NADH regeneration boosts extracellular electron transfer of Shewanella oneidensis MR-1.[J]. Acs Synthetic Biology, 2018, 7(3).
                <p style="font-size:12px;"><span>[9] Jcat, http://www.jcat.de/#opennewwindow  </span></p>
+
</span></p>
                <p style="font-size:12px;"><span>[10] Genomic reconstruction of
+
                Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization PNAS February 24, 2009 106 (8) 2874-2879  </span></p>
+
                <p style="font-size:12px;"><span>[11] Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR‑1  ACS Synth. Biol. 2018, 7, 885−895</span></p>
+
                <p style="font-size:12px;"><span>[12]Varman A. M., Yu Y., You L. & Tang Y. J. Photoautotrophic production of d-lactate in an engineered cyanobacterium. Microb. Cell Fact. 12, 117 (2013).  </span></p>
+
 
               </div>
 
               </div>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
 +
-->
 
     </div>       
 
     </div>       
 
</section>
 
</section>

Latest revision as of 04:29, 8 November 2018

HillSide Multi purpose HTML5 Template

Comparison between PSB

This page has been moved to "Model of Systems"

If your browser haven't jumped to that page automatically, please click the link above.