Line 13: | Line 13: | ||
border: 1px solid black; | border: 1px solid black; | ||
} | } | ||
+ | |||
+ | .learn_more{ | ||
+ | position: absolute; bottom: 0; | ||
+ | font-size: 20px; | ||
+ | |||
+ | } | ||
+ | |||
+ | |||
</style> | </style> | ||
Line 102: | Line 110: | ||
A successful attempt in standardising the ratio of catechu:slaked lime required for media formulation. | A successful attempt in standardising the ratio of catechu:slaked lime required for media formulation. | ||
</p> | </p> | ||
− | <button class="fadeandscale1_open btn btn-danger | + | <button class="fadeandscale1_open btn btn-danger learn_more" >Learn More</button> |
</div> | </div> | ||
Line 231: | Line 239: | ||
</p> | </p> | ||
− | <button | + | <button class="fadeandscale2_open btn btn-danger learn_more">Learn More</button> |
</div> | </div> | ||
<div class="col-md-5"> | <div class="col-md-5"> | ||
Line 305: | Line 313: | ||
</p> | </p> | ||
− | <button | + | <button class="fadeandscale3_open btn btn-danger learn_more">Learn More</button> |
</div> | </div> | ||
<div class="col-md-5"> | <div class="col-md-5"> | ||
Line 435: | Line 443: | ||
</p> | </p> | ||
− | <button | + | <button class=" fadeandscale4_open btn btn-danger learn_more">Learn More</button> |
</div> | </div> | ||
<div class="col-md-5"> | <div class="col-md-5"> | ||
Line 487: | Line 495: | ||
Degradation of catechu by potential isolates and selected enzyme XylE in M9+CS broth medium. | Degradation of catechu by potential isolates and selected enzyme XylE in M9+CS broth medium. | ||
</p> | </p> | ||
− | <button class="fadeandscale5_open | + | <button class="fadeandscale5_open btn btn-danger learn_more" >Learn More</button> |
</div> | </div> | ||
<div class="col-md-5"> | <div class="col-md-5"> | ||
Line 535: | Line 543: | ||
</p> | </p> | ||
− | <button class=" fadeandscale6_open | + | <button class=" fadeandscale6_open btn btn-danger learn_more" >Learn More</button> |
</div> | </div> | ||
<div class="col-md-5"> | <div class="col-md-5"> | ||
Line 590: | Line 598: | ||
</p> | </p> | ||
− | <button class="fadeandscale7_open | + | <button class="fadeandscale7_open btn btn-danger learn_more" >Learn More</button> |
</div> | </div> | ||
<div class="col-md-5"> | <div class="col-md-5"> | ||
Line 640: | Line 648: | ||
</p> | </p> | ||
− | <button class=" fadeandscale8_open | + | <button class=" fadeandscale8_open btn btn-danger learn_more" >Learn More</button> |
</div> | </div> | ||
<div class="col-md-5"> | <div class="col-md-5"> | ||
Line 689: | Line 697: | ||
</p> | </p> | ||
− | <button class=" fadeandscale9_open | + | <button class=" fadeandscale9_open btn btn-danger learn_more" >Learn More</button> |
</div> | </div> | ||
<div class="col-md-5"> | <div class="col-md-5"> |
Revision as of 18:13, 22 November 2018
RESULTS
Experiment 1:
Catechu standardisation
A successful attempt in standardising the ratio of catechu:slaked lime required for media formulation.
With the above information we tried out various ratios of catechu:slaked lime so as to get the maximum intensity of the distinct red colour which is characteristic to the paan stains prevalent across the country.
Ratio (Catechu:slaked lime) | Amount of catechu(gms) | Boiling water (ml) | header not given | Slaked lime (gms) | Absorbance at λmax= 254nm |
---|---|---|---|---|---|
1:0.1 | 0.1 | 100 | Cool the | 0.01 | 1.921 |
1:0.2 | 0.1 | 100 | Solution | 0.02 | 1.871 |
1:0.3 | 0.1 | 100 | for 15-20 | 0.03 | 1.754 |
1:0.4 | 0.1 | 100 | mins | 0.04 | 1.206 |
1:0.5 | 0.1 | 100 | 0.05 | 1.319 |
From the above observations it was concluded that the maximum intensity of red colour obtained from the solution was from the sample with 1:0.1 Catechu : slaked lime concentration. Hence, the same ratio was used for the preparation of the stock with 10g Catechu and 1g slaked lime of which 1% was used for media preparation.
Experiment 2:
Media Formulation and Enrichment
Various media formulations for enriching natural samples with the aim of finding catechu degrading isolates.
- M9
- M9+Glucose
- M9+CS (catechu+slaked lime stock)
- M9+CS (catechu+slaked lime stock)
Hence, a flask with M9 medium was also inoculated and checked for growth so as to ensure that the bacteria are not growing due to the carbon source in the sample but are using the carbon source provided in the medium.The choice of minimal medium was also made keeping in mind the single carbon source utilisation by the organisms.
Growth was observed in all the flasks, except the flasks containing only M9 medium without any carbon source, in less than 72 hours of shaking incubation at room temperature.
No growth/turbidity in the flasks containing only M9 medium proves that the carbon source from sample was successfully filtered & thus has proven to be an efficient negative control.
Moreover, reduction in the intensity of the red colour (due to catechu extract in the medium) was observed after 24 hours.
Media formulation for Sample 1 viz. water from Ulhas river
Experiment 3:
Isolation of organisms and identification by 16S rRNA sequencing
Isolation on solid media after enrichment of samples and identification of the isolates by 16s rRNA sequencing.
Isolates which were showing prominent degradation of colour on the plates were sent for identification by 16s rRNA sequencing.
Results from National Centre for Microbial Resource (NCMR) for 16s rRNA sequencing:
Bacterial Strains:
Strain no. | Closest neighbour | Accession No. | % similarity |
---|---|---|---|
S2C1 | Klebsiella pneumoniae subsp. pneumonia DSM 30104(T) | AJJI01000018 | 99.66 |
S2C2 | Klebsiella quasipneumoniae subsp.quasipneumoniae 01A030(T) | HG933296 | 99.73 |
Fungal Strains:
Strain no. | Closest neighbour | Accession No. | % similarity |
---|---|---|---|
S1 | Aspergillus niger strain ATCC 16888 | AY373852.1 | 99 |
A.niger | Aspergillus niger strain ATCC 16888 | AY373852.1 | 99 |
Experiment 4:
In search of potential enzymes that degrade catechu!
Literature survey and screening of various enzymes that break bonds in molecules having similar structures as that of components of catechu!
On these grounds we also looked at various team wikis from past years in search for similar projects. We found that Team Paris-Bettencourt has worked with catechol dioxygenases. We got in touch with them and they sent us their cloned enzymes [catechol-1,2-dioxygenase (CatA) and catechol-2,3-dioxygenase(XylE)] which we could successfully transform into DH5alpha cells. We tested these transformants on catechu and slaked lime media and the results were flabbergasting.
A distinct zone of clearance was observed around the streaks and spots of the growing culture on the catechu and slaked lime solid medium. Hence, we decided to proceed with these cultures as well our natural isolates.
Experiment 5:
DEGRADATION - Chewing Catechu
Degradation of catechu by potential isolates and selected enzyme XylE in M9+CS broth medium.
The distinct colour difference between the control tube and potential isolates which includes Klebsiella pneumoniae, Aspergillus niger (S1 fungus and A.niger), S4 fungus can be observed.
For quantifying degradation activity of DH5α containing enzyme XylE in M9+CS broth medium we used ELISA plate reader. 10 % of volume inoculum of DH5α was inoculated in M9+CS broth of catechu stock 0.1%, 0.5% and 1% readings was taken at 415 nm on interval of 48 hrs.
Experiment 6:
Cloning - Challenge Accepted!
Molecular cloning of the gblock fragments in pSB1C3 backbone (digestion, ligation, transformation) and their confirmation by diagnostic digest agarose gel run.
Ligation math for all the fragments were done and the process of digestion, ligation and transformation was carried out successfully to yield 2 well assembled constructs. The plasmid was again extracted from the selected clones on the plates and run an agarose gel electrophoresis after a single and dual cut diagnostic digest with EcoR1 and Pst1.
In the above Gel-Red stained Agarose gel, in which construct (pBAD_ompT_xylE) and construct (pBAD_xylE) are the cloned modules which have the bands at the expected size of 3278 bp or 3.3 kb and 3218 bp or 3.2 kb respectively after single EcoR1 digest.
Also faint bands of the backbone at 2 kb were obtained but the fragment DNA wasn’t well stained (maybe due to low amounts) and very faint bands of fragments of size 1.2 kb for (pBAD_ompT_xylE) as expected of 1208 bp/1.2 kb and ~1.2 kb for (pBAD_xylE) as expected 1148 bp/1.15 kb were observed.
This diagnostic digest confirms that the cloned fragments are of the desired assembly and the clones of these DNA constructs are used for further analysis by protein characterisation.
Experiment 7:
SDS-PAGE Protein Characterisation
After analysing a successful cloning, the plasmid DNA was then transferred into DH5a cells to have growing transformants for characterising protein expression.
- The dark protein bands are observed slightly above the 33 kDa ladder which is equal to the expected size of the enzyme catechol-2,3-dioxygenase of 35 kDa.
- DH5a pBAD_xylE transformants grown in Glucose do not show any protein bands at this size and hence can be verified as negative control. While DH5a pBAD_xylE transformants grown in Arabinose show the bands at the expected size.
- In presence of Glucose in the substrate, the enzyme is not synthesised, while in presence of Arabinose, the enzyme is synthesised, which is true to the fact that the construct having promoter pBAD is being induced only in presence of arabinose to synthesise the enzyme catechol-2,3-dioxygenase.
- The above gel confirms that the constructs are well assembled and successfully synthesize the desired enzyme catechol-2,3-dioxygenase which is used for catechu degradation and further tested for its ability to degrade various dye substrates.
Experiment 8:
Assay for detection of catechol-2,3-dioxygenase
An assay which will detect the presence of the enzyme catechol-2,3-dioxygenase which is a translational product of our cloned gene-XylE.
Intensity of the generated yellow colour was detected in the form of absorbance values.The absorbance readouts were taken at 415 nm at an interval of 5 minutes and graphs were prepared to interpret the generated data.
The XylE gene in our construct is under the regulation of the pBAD promoter which is arabinose responsive. From the generated data we could conclude that with advancement in time, the absorbance of the system increases when the cells are grown in the presence of arabinose but remains fairly constant when grown in glucose. For more details click here..
Experiment 9:
Versatility - Testing on dyes
Demonstrating versatility of construct/model to degrade common lab dyes other than paan stains.Clearance around the colony observed on plates containing several dyes.
We inoculated our positive clones on luria bertani medium plates of 0.025% concentration of dyes which includes congo red,methylene blue and safranin. Clearance around the colony indicating degradation was distinctly observed after 48 hrs of incubation. This concludes the activity of enzyme/ action of catechewing coli on other stains/dyes giving us future prospective to work on project.