Difference between revisions of "Team:NCTU Formosa/Wet Lab/Curcumin Biosensor"

(Created page with "{{NCTU_Formosa/test}} <html> <head> <meta charset="UTF-8"> <title>Experiment</title> <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></sc...")
 
 
(46 intermediate revisions by 7 users not shown)
Line 4: Line 4:
 
<head>
 
<head>
 
   <meta charset="UTF-8">
 
   <meta charset="UTF-8">
   <title>Experiment</title>
+
   <title>Curcumin Experiment</title>
 
   <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>
 
   <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>
 
   <script src="jQueryAssets/jquery-1.11.1.min.js"></script>
 
   <script src="jQueryAssets/jquery-1.11.1.min.js"></script>
Line 27: Line 27:
 
       width: 100%;
 
       width: 100%;
 
       font-family: Levenim MT;
 
       font-family: Levenim MT;
      overflow: auto;
 
 
       padding-bottom: 150px;
 
       padding-bottom: 150px;
 
     }
 
     }
Line 36: Line 35:
  
 
     .title_title{
 
     .title_title{
       width: 50%;
+
       width: 45%;
       margin-left: 25%;
+
       margin-left: 27.5%;
       margin-bottom: 10px;
+
       margin-bottom: 2vw;
       padding-top: 70px;
+
       margin-top: 6vw;
 
     }
 
     }
  
 
     .title{
 
     .title{
       font-size: 7vmin;
+
       font-size: 3.5vw;
       padding-top: 40px;
+
       margin-top: 6vw;
 +
      margin-bottom: 1vw;
 
       text-align: center;
 
       text-align: center;
 
     }
 
     }
  
 
     .title_1{
 
     .title_1{
       font-size: 6vmin;
+
       font-size: 3vw;
 
       width: 75%;
 
       width: 75%;
       margin: 50px;
+
       margin: 3vw;
       margin-top: 100px;
+
       margin-top: 6vw;
 
       margin-left: 12.5%;
 
       margin-left: 12.5%;
 
     }
 
     }
  
 
     .title_2{
 
     .title_2{
       font-size: 5vmin;
+
       font-size: 2.3vw;
 
       width: 70%;
 
       width: 70%;
       margin: 50px;
+
       margin-top: 2vw;
 +
      margin-bottom: 2vw;
 
       margin-left: 15%;
 
       margin-left: 15%;
 
     }
 
     }
  
 
     .title_3{
 
     .title_3{
       font-size: 3.5vmin;
+
       font-size: 2vw;
 
       width: 70%;
 
       width: 70%;
 
       margin: 50px;
 
       margin: 50px;
Line 72: Line 73:
 
     .text{
 
     .text{
 
       font-size: 3vmin;
 
       font-size: 3vmin;
       width: 75%;
+
       width: 70%;
 
       position: relative;
 
       position: relative;
       margin-left: 12.5%;
+
       margin-left: 15%;
       margin-right: 12.5%;
+
       margin-right: 15%;
       margin-top: 40px;
+
       margin-top: 2vw;
       margin-bottom: 40px;
+
       margin-bottom: 2vw;
 
       text-align: justify;
 
       text-align: justify;
 
     }
 
     }
Line 86: Line 87:
 
       color: #575656;
 
       color: #575656;
 
       text-align: center;
 
       text-align: center;
 +
    }
 +
 +
    a{
 +
      text-decoration: none;
 +
      color: #05094d;
 +
      transition-duration: 0.4s;
 +
    }
 +
 +
    a:hover{
 +
      color: #f9e71e;
 
     }
 
     }
  
Line 123: Line 134:
  
 
     thead{
 
     thead{
       background: #1182be;
+
       background: #142968;
 
       color: #fefefe;
 
       color: #fefefe;
       font-size: 3.5vmin;
+
       font-size: 3vmin;
 
     }
 
     }
  
Line 133: Line 144:
  
 
     .equation{
 
     .equation{
       font-size: 3vmin;
+
       font-size: 2.5vmin;
 
       margin: 40px;
 
       margin: 40px;
 
       text-align: center;
 
       text-align: center;
Line 149: Line 160:
 
       margin: 0;
 
       margin: 0;
 
       border: 0;
 
       border: 0;
      overflow: auto;
 
      padding-top: 50px;
 
 
     }
 
     }
 
     .sec2{
 
     .sec2{
Line 156: Line 165:
 
       margin: 0;
 
       margin: 0;
 
       border: 0;
 
       border: 0;
      overflow: hidden;
 
 
     }
 
     }
 
+
     .sec3{
     .textnew{
+
       padding: 0;
       font-size: 3vmin;
+
       margin: 0;
      width: 64%;
+
       border: 0;
      position: relative;
+
      margin-left: 18%;
+
      margin-right: 18%;
+
      margin-top: 40px;
+
       margin-bottom: 40px;
+
       text-align: justify;
+
 
     }
 
     }
  
 
     .protein{
 
     .protein{
 
       position: absolute;
 
       position: absolute;
       width: 11%;
+
       width: 12%;
       left: 20.5%;
+
       left: 23.5%;
       top: 14.3vw;
+
       top: 15.8vw;
 
       transition-duration: 0.4s;
 
       transition-duration: 0.4s;
 
     }
 
     }
Line 180: Line 182:
 
     .mic{
 
     .mic{
 
       position: absolute;
 
       position: absolute;
       width: 11%;
+
       width: 12%;
       left: 40%;
+
       left: 51.5%;
       top: 13.8vw;
+
       top: 11.4vw;
      transition-duration: 0.4s;
+
    }
+
 
+
    .growth{
+
      position: absolute;
+
      width: 11%;
+
      left: 60%;
+
      top: 14.5vw;
+
 
       transition-duration: 0.4s;
 
       transition-duration: 0.4s;
 
     }
 
     }
Line 196: Line 190:
 
     .sensor{
 
     .sensor{
 
       position: absolute;
 
       position: absolute;
       width: 11%;
+
       width: 12%;
       left: 83%;
+
       left: 82.5%;
       top: 13vw;
+
       top: 16vw;
 
       transition-duration: 0.4s;
 
       transition-duration: 0.4s;
 
     }
 
     }
Line 216: Line 210:
 
     .sensor:hover{
 
     .sensor:hover{
 
       transform: scale(1.2);
 
       transform: scale(1.2);
 +
    }
 +
 +
    .PCR{
 +
      width: 20%;
 +
      margin-left: 40%;
 +
      margin-bottom: 0.5vw;
 +
    }
 +
 +
    .result{
 +
      width: 60%;
 +
      margin-left: 20%;
 +
      margin-top: 2vmin;
 
     }
 
     }
  
Line 254: Line 260:
 
   <div class="wrapper">
 
   <div class="wrapper">
 
     <div class="banner">
 
     <div class="banner">
       <img class="cover" src="https://static.igem.org/mediawiki/2018/1/17/T--NCTU_Formosa--wetlab_cover_2.png">
+
       <img class="cover" src="https://static.igem.org/mediawiki/2018/c/c5/T--NCTU_Formosa--wetlab6.png">
 
       <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/Expression"><img src="https://static.igem.org/mediawiki/2018/6/6e/T--NCTU_Formosa--protein_expression.png" class="protein"></a>
 
       <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/Expression"><img src="https://static.igem.org/mediawiki/2018/6/6e/T--NCTU_Formosa--protein_expression.png" class="protein"></a>
       <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/Growth_Curve"><img src="https://static.igem.org/mediawiki/2018/e/e4/T--NCTU_Formosa--growth.png" class="growth"></a>
+
       <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/Functional_Analysis"><img src="https://static.igem.org/mediawiki/2018/7/70/T--NCTU_Formosa--MIC.png" class="mic"></a>
      <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/MIC"><img src="https://static.igem.org/mediawiki/2018/7/70/T--NCTU_Formosa--MIC.png" class="mic"></a>
+
 
       <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/Curcumin_Biosensor"><img src="https://static.igem.org/mediawiki/2018/2/20/T--NCTU_Formosa--biosensor.png" class="sensor"></a>
 
       <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/Curcumin_Biosensor"><img src="https://static.igem.org/mediawiki/2018/2/20/T--NCTU_Formosa--biosensor.png" class="sensor"></a>
 
     </div>
 
     </div>
 
     <div class="sec1" style="background-color:#ffffff;">
 
     <div class="sec1" style="background-color:#ffffff;">
       <img src="https://static.igem.org/mediawiki/2018/3/30/T--NCTU_Formosa--Experiment_design_title.png" class="title_title">
+
       <img src="https://static.igem.org/mediawiki/2018/b/bb/T--NCTU_Formosa--bio-sensor.png" class="title_title">
 
       <div class="text">
 
       <div class="text">
         <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Our system provided a way to regulate microbiota to an ideal balance . Since we focused our model on the excess PSB in soil, which is a large issue of agriculture in Taiwan, we chose antimicrobial peptide as the Bio-stimulator to limit the amount of PSB in soil. To express our target protein, we first designed BioBricks that contain sequences of these peptides. All the experiments we performed with BioBricks are mentioned below.
+
         <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;NCTU_Formosa 2018 designed a BioBrick contains <a href="https://2014.igem.org/Team:SF_Bay_Area_DIYbio/Parts#Alpha-s1_casein_.28CSN1S1.29">αS1-casein</a> and a GS linker <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1974030">(BBa_K1974030)</a> ahead as a curcumin bio-sensor.</p>
</p>
+
      </div>
 +
      <img src="https://static.igem.org/mediawiki/2018/9/90/T--NCTU_Formosa--%CE%B1S1-casein.png" class="result">
 +
      <div class="explanation">
 +
        <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg>
 +
        Figure 1: Composite part of αS1-casein
 +
      </div>
 +
      <div class="text">
 +
        <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The goal of our system is to regulate the soil microbiota in order to reach the maximum crop productivity. To accurately predict the curcumin content from NPK content in soil, we created a bio-sensor. This sensor could precisely detect the curcumin containment in turmeric. After the detection of curcumin, results could be fitted into our productivity model and utilize artificial intelligent to increase the accuracy. With the cooperation of productivity model and curcumin transformation model, we could perfectly predict the crop productivity and maintained the balance of soil microbiota.</p>
 +
    </div>
 +
    <div class="sec1" style="background-color:#ffffff;">
 +
      <div class="title_1"><p>Background Introduction</p></div>
 +
      <div class="title_2"><p>Curcumin</p></div>
 +
      <div class="text">
 +
        <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Curcumin is a natural lipid-soluble yellow compound from the plant turmeric. It is a potent antioxidant as well as anti-tumorigenic and anti-inflammatory molecule. Although curcumin has been proved its therapeutic efficacy against many human ailments, but the problem is it is hard to absorb by human cells. To solve this problem, a paper which indicated a curcumin carrier protein called αS1-casein showed high binding affinity with curcumin. We then utilized this property of αS1-casein to create a curcumin bio-sensor.</p>
 +
      </div>
 +
      <div class="title_2"><p>αS1-casein</p></div>
 +
      <div class="text">
 +
        <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Caseins are proteins commonly found in mammalian milk and is a mixture of four phosphoprotein. One of the phosphoprotein is αS1-casein, which contains no disulfide bonds and relatively little tertiary structure. As their primary function is nutritional, binding large amounts of calcium, zinc and other biologically important metals, amino acid substitutions or deletions have little impact on function.</p>
 +
      </div>
 +
      <div class="title_2"><p>The Binding Between Curcumin and αS1-casein</p></div>
 +
      <div class="text">
 +
        <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;According to the reference, we found how curcumin bind with αS1-casein. Curcumin has a β-diketone moiety, flanked by two phenolic groups, that helps bind to proteins through hydrophobic interactions. The carboxyl-terminal of αS1-casein (100−199 residues) predominantly contains hydrophobic amino acids, which may be involved in the binding process. Residues 14−24 in αS1-casein are hydrophobic in nature and form a surface “patch” of hydrophobicity. Curcumin may probably be binding at these two sites, with two different ranges of affinity through hydrophobic interaction. One with high affinity [(2.01 ± 0.6) × 106 M−1] and the other with low affinity [(6.3 ± 0.4) × 104 M−1].</p>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
 
     <div class="sec2" style="background-color:#FFFFFF;">
 
     <div class="sec2" style="background-color:#FFFFFF;">
       <div class="title"><p>BioBrick</p></div>
+
       <div class="title_1"><p>Establishment</p></div>
 +
      <div class="title_2"><p>Cloning of αS1-casein</p></div>
 
       <div class="text">
 
       <div class="text">
         <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The BioBrick we designed contains a T7 promoter, induced by IPTG, and RBS with our target protein behind. We also added a intein-CBD (chitin binding domain) tag behind bacteriocin to better purify our peptide.</p>
+
         <p>
 +
          &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;We got the amino acid sequence of αS1-casein from NCBI, and adjusted the DNA sequence to optimize its expression in <i>E. coli</i>. We also added a GS linker ahead to enhance the function of sensor and synthesized the gblock fragment from IDT.
 +
        </p>
 
       </div>
 
       </div>
       <img src="https://static.igem.org/mediawiki/2018/a/aa/T--NCTU_Formosa--biobrick.png" class="expression" style="display:block; margin:auto;" width="700">
+
      <div class="text">
 +
        <p>
 +
          &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;First of our cloning process, we did PCR to acquire the product of GS Linker-αS1 casein DNA fragment. (Fig. 2) Next, we digested the fragment and ligated it to pET30a vector. Finally, we transformed the plasmid with GS Linker-αS1 casein to <i>E. coli</i>. BL21 DE3 and made protein expression.
 +
        </p>
 +
      </div>
 +
       <img src="https://static.igem.org/mediawiki/2018/8/8a/T--NCTU_Formosa--Improvement_PCR.png" class="PCR">
 
       <div class="explanation">
 
       <div class="explanation">
 
         <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg>
 
         <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg>
         Figure 1: BioBrick: T7 promoter + RBS + target peptide + intein-CBD
+
         Figure 2: PCR product of αS1-casein
 
       </div>
 
       </div>
 +
      <div class="title_2"><p>Chip Production</p></div>
 
       <div class="text">
 
       <div class="text">
         <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Intein is a protein segment that is able to excise itself from the larger protein it binds to. Therefore, it is also called “ protein introns”. We utilized intein-CBD tag to purify our peptides.<br>Although affinity tags have been widely used to purify recombinant proteins, it must removed by protease in the final purification. In contrast, intein-CBD tag will undergo the cleavage reaction with DTT (1,4-dithiothreitol) or cysteine, which will not cause the structure changes of our short peptide.
+
         <p>1. Dip the gold chips in 10mM Mua, RT for 4hrs.</p>
</p>
+
        <p>2. Wash the chips with 95% EtOH three times and dry.</p>
 +
        <p>3. Add EDC+NHS mixture (100+100mM in DDW) on chips, RT for 1hrs.</p>
 +
        <p>4. DDW rinse the chips and dry.</p>
 +
        <p>5. Add αS1-casein on chips, RT for 1hrs</p>
 +
        <p>6. Wash with PBS three times and dry.</p>
 +
        <p>7. Dip the chips in blocking solution, RT for 1.5hrs.</p>
 +
        <p>8. Wash with PBS three times and dry.</p>
 
       </div>
 
       </div>
 +
    </div>
 +
    <div class="sec2" style="background-color:#FFFFFF;">
 +
      <div class="title_1"><p>Detection Method</p></div>
 +
      <div class="title_2"><p>Electrochemistry Introduction</p></div>
 +
      <div class="text"><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;After choosing αS1-casein as our bio-sensor, we used Differential Pulse Voltammetry (DPV) method to detect curcumin containment.</p></div>
 +
      <div class="text"><p><b>Differential Pulse Voltammetry</b></p></div>
 +
      <div class="text">
 +
        <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;DPV uses the difference between before and after the pulse application in order to solve the influence of background noise. Thus, the sensitivity and stability of DPV is better than the common method of CV(cyclic voltammetry). We hope we can use this method to observe the obvious current change when detecting curcumin and create more accurate standard curve in advance.</p>
 +
      </div>
 +
      <div class="title_2"><p>Measurement Protocol of Curcumin Bio-sensor</p></div>
 +
      <div class="text">
 +
        <p>1. Add the diluted curcumin samples on our bio-sensor to react for 30min.</p>
 +
        <p>2. Rinse with wash buffer and dry the chips.</p>
 +
        <p>3. Wash the reference and counter electrodes with DDW, and dry them.</p>
 +
        <p>4. Set up the three electrodes system within electrochemical cell. (Fig. 3, left)</p>
 +
        <p>5. Use the prototype of electrochemical machine to measure the DPV method. (Fig.3, right)</p>
 +
      </div>
 +
      <img src="https://static.igem.org/mediawiki/2018/7/76/T--NCTU_Formosa--Curcumin_sensor.png" class="result">
 
       <div class="explanation">
 
       <div class="explanation">
 
         <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg>
 
         <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg>
         Figure 2: Procedure of intein-mediated protein splicing
+
         Figure 3. Three electrode system (left) and prototype of electrochemical machine (right).
 
       </div>
 
       </div>
      <div class="title_1"><p>1. Protein expression</p></div>
+
    </div>
       <div class="title_2"><p>Cloning:</p></div>
+
    <div class="title_1"><p>Result</p></div>
       <div class="textnew">
+
       <div class="title_2"><p>Pretest of Differential Pulse Voltammetry (DPV)</p></div>
         <p>We cloned the insert gene into pSB1C3 backbone and transform into <i>E. coli</i> DH5α. <a href="https://2018.igem.org/Team:NCTU_Formosa/Parts parts"><br>These</a> have been submitted to iGEM.</p>
+
       <div class="text">
 +
         <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;First of all, we used DPV to check whether our bio-sensor can detect curcumin. As we mentioned above, DPV method tested the current change when curcumin binding. Therefore, we compared the two kinds of chips, the red line was the general chips, and the blue line was the chips modified with αS1-casein (Fig. 4). As long as our bio-sensor contacted with the standard samples of curcumin (from Sigma Aldrich), its current value would become larger. We could easily observe that our bio-sensor with αS1-casein produced more fierce Redox reaction than another. Figure 4 also represented that the bio-sensor modified with αS1-casein have more effect of detecting curcumin than none.</p>
 
       </div>
 
       </div>
       <div class="title_2"><p>Expression:</p></div>
+
       <img src="https://static.igem.org/mediawiki/2018/8/83/T--NCTU_Formosa--curcumin_fig2.png" class="result">
       <div class="textnew">
+
       <div class="explanation">
         <p>We expressed the proteins by <i>E. coli</i> ER2566 and <i>E. coli</i> BL21 Rosetta-Gami.</p>
+
         <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg>
 +
        Figure 4. Pretest of curcumin bio-sensor in DPV. (Reduction)
 
       </div>
 
       </div>
       <div class="title_2"><p>SDS-PAGE:</p></div>
+
    </div>
       <div class="textnew">
+
    <div class="sec2" style="background-color:#FFFFFF;">
         <p>We checked the expression result through SDS-PAGE.</p>
+
      <div class="title_1"><p>Applications</p></div>
 +
       <div class="title_2"><p>1. Determine Standard Curve and Create the Formula</p></div>
 +
      <div class="text">
 +
        <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;We used the standard samples of curcumin and diluted it in dilution buffer. Next, we detected the diluted curcumin samples by curcumin bio-sensor and made the standard curve. Since it was the logarithmic function, we put the curcumin concentration into the natural logarithm, and did the polynomial curve fitting. We obtained the result in Figure 5, R<sup>2</sup>=0.9995. This represented the prediction of real samples from the following formula was really close to real value.</p>
 +
    $$y = -2\cdot 10^{-5}x^5+8\cdot 10^{-4}x^4-0.0127x^3+0.082x^2-0.049x+1.5\cdot 10^{-3}$$
 +
      </div>
 +
      <div class="table">
 +
        <table>
 +
        <caption>
 +
          <p class="explanation">
 +
            <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg>
 +
              Table 1: Variables of standard curve function.
 +
          </p>
 +
        </caption>
 +
        <thead>
 +
          <tr>
 +
            <th><p>Symbol</p></th>
 +
            <th><p>Unit</p></th>
 +
            <th><p>Explanation</p></th>
 +
          </tr>
 +
        </thead>
 +
        <tbody>
 +
          <tr>
 +
            <td><p>x</p></td>
 +
            <td><p>uM / nM</p></td>
 +
            <td><p>Curcumin Concentration</p></td>
 +
          </tr>
 +
          <tr>
 +
            <td><p>y</p></td>
 +
            <td><p>A</p></td>
 +
            <td><p>DPV Peak Current</p></td>
 +
          </tr>
 +
        </tbody>
 +
      </table>
 +
      </div>
 +
      <img src="https://static.igem.org/mediawiki/2018/d/d2/T--NCTU_Formosa--standard.png" class="result">
 +
       <div class="explanation">
 +
         <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg>
 +
        Figure 5: The standard curve and the concentration formula of curcumin.
 +
      </div>
 +
      <div class="title_2"><p>2. The Detection Result of Real Samples from Turmeric Root</p></div>
 +
      <div class="text">
 +
        <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Our final goal is to predict the concentration of curcumin in real samples by the bio-sensor. Therefore, we prepared the most curcumin content part, the root of turmeric to pretest our bio-sensor. First of all, we milled the turmeric root and divided the powder into two groups. One of them was added with extraction buffer but not underwent the extraction protocol, and the other was added with extraction buffer but underwent the extraction process. The result (Fig. 6) showed only the sample which underwent the extraction process was able to be detected, which represented our sensor had strong specificity to curcumin. Moreover, our curcumin bio-sensor would not be disturbed even if taking the whole turmeric content to detect.</p>
 +
      </div>
 +
      <img src="https://static.igem.org/mediawiki/2018/3/30/T--NCTU_Formosa--c.png" class="result">
 +
      <div class="explanation">
 +
        <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg>
 +
        Figure 6: Detection of real samples from turmeric root.
 
       </div>
 
       </div>
      <div class="title_1"><p>2. MIC test</p></div>
+
    </div>
       <div class="title_2"><p>Inhibition zone:</p></div>
+
    <div class="title_2"><p>3. Create a New Method to Detect Curcumin in Time</p></div>
      <div class="title_2"><p>Minimum Inhibitory Concentration Broth Microdilution:</p></div>
+
       <div class="text">
      <div class="title_1"><p>3. Growth curve experiment</p></div>
+
        <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;In order to feedback our productivity model in time and make it more accurately, we want to find a way to detect curcumin instantly. We supposed that turmeric can also detect curcumin as well as the rhizome and other parts of turmeric.</p>
      <div class="title_1"><p>4. Soil experiment</p></div>
+
        <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;According to Plant Science, photosynthesis aids in the production of curcumin<sup>[3]</sup>, so we selected the leaves as the test samples and detected it by DPV. Our sample divided into five groups: negative control, normal leaves, and turmeric leaves in three different areas. After estimating the turmeric concentration by using the standard curve formula obtained before, we got the result in the figure below (Fig. 7).</p>
 +
        <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;From this result, obviously, we can see the negative control--normal leaves contain no curcumin. On the other hand, tumeric grown in area 1, 2 and 3 shows curcumin content. It means that we can use turmeric leaves to detect curcumin instead of using curcumin rhizome, and each sample of the curcumin concentration is different. Thus, we can reasonably speculate that the curcumin concentration of the turmeric rhizome is relative with the curcumin concentration of turmeric leaves. Next, we must start a large number of experiments with curcumin in the same turmeric leaves and rhizome to create a new model to improve the feedback system of the entire productivity model. This is what we want to achieve in the future.</p>
 +
      </div>
 +
    <img src="https://static.igem.org/mediawiki/2018/8/88/T--NCTU_Formosa--Curcumin_result.png" class="result">
 +
    <div class="explanation">
 +
      <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg>
 +
      Figure 7: Detection of curcumin content in turmeric leaf samples from different areas.
 
     </div>
 
     </div>
  
 +
      <div class="title_1"><p>Conclusion</p></div>
 +
      <div class="text">
 +
        <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;In our conclusion, we use the electrochemistry method, DPV, to prove that we can detect curcumin if we use the gold chips to connect with αS1-casein as biosensor. We also created a standard curve and generated an accurate formula to support the prediction of curcumin concentration in real samples. Moreover, we certify the specificity is perfect in real samples. Finally, we successfully detected curcumin in turmeric leaves. Based on these experiments, we created a new curcumin biosensor. In order to improve our productivity model, we designed a new method to detect curcumin concentration quickly and consistently. Our BioBrick and device allow for calibration of our productivity model to better demonstrate the efficacy of our soil regulation system. Click <a href="https://2018.igem.org/Team:NCTU_Formosa/Demonstrate">here</a> to see how our applied system improves turmeric plants on our farm!</p>
 +
      </div>
 +
    <div class="title_1"><p>References</p></div>
 +
    <div class="text">
 +
      <p>
 +
        1. Gupta, S. C., et al. (2012). "Discovery of curcumin, a component of golden spice, and its miraculous biological activities." Clin Exp Pharmacol Physiol 39(3): 283-299.<br><br>
 +
        2. Le Parc, A., et al. (2010). "α(S1)-casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly membrane-associated form." BMC Cell Biology 11: 65-65.<br><br>
 +
        3. Sneharani, A. H., et al. (2009). "Interaction of αS1-Casein with Curcumin and Its Biological Implications." Journal of Agricultural and Food Chemistry 57(21): 10386-10391.<br><br>
 +
        4. Teresa Treweek (September 12th 2012). Alpha-Casein as a Molecular Chaperone, Milk Protein Walter L. Hurley, IntechOpen, DOI: 10.5772/48348.<br><br>
 +
        5.  Palazon, F.; Montenegro Benavides, C.; Léonard, D.; Souteyrand, É.; Chevolot, Y.; Cloarec, J. P. Carbodiimide/NHS derivatization of COOH-terminated SAMs: activation or byproduct formation?. Langmuir, 2014, 30, 4545-4550.<br><br>
 +
        6.  Sneharani, A. H., et al. (2009). "Interaction of αS1-Casein with Curcumin and Its Biological Implications." Journal of Agricultural and Food Chemistry 57(21): 10386-10391.<br><br>
 +
        7.  Palazon, F.; Montenegro Benavides, C.; Leonard, D.; Souteyrand, E.; Chevolot, Y.; Cloarec, J. P. Carbodiimide/NHS derivatization of COOH-terminated SAMs: activation or byproduct formation?. Langmuir, 2014, 30, 4545-4550.<br><br>
 +
        8.  Dixit, D. and N. K. Srivastava (2000). "Distribution of photosynthetically fixed 14CO2 into curcumin and essential oil in relation to primary metabolites in developing turmeric (Curcuma longa) leaves1CIMAP Communication No. 99-28J.1." Plant Science 152(2): 165-171.
 +
      </p>
 +
    </div>
 +
  </div>
 
<!----------------------------------------------------------------------------->
 
<!----------------------------------------------------------------------------->
  

Latest revision as of 12:16, 4 December 2018

Navigation Bar Curcumin Experiment

     NCTU_Formosa 2018 designed a BioBrick contains αS1-casein and a GS linker (BBa_K1974030) ahead as a curcumin bio-sensor.

Figure 1: Composite part of αS1-casein

     The goal of our system is to regulate the soil microbiota in order to reach the maximum crop productivity. To accurately predict the curcumin content from NPK content in soil, we created a bio-sensor. This sensor could precisely detect the curcumin containment in turmeric. After the detection of curcumin, results could be fitted into our productivity model and utilize artificial intelligent to increase the accuracy. With the cooperation of productivity model and curcumin transformation model, we could perfectly predict the crop productivity and maintained the balance of soil microbiota.

Background Introduction

Curcumin

     Curcumin is a natural lipid-soluble yellow compound from the plant turmeric. It is a potent antioxidant as well as anti-tumorigenic and anti-inflammatory molecule. Although curcumin has been proved its therapeutic efficacy against many human ailments, but the problem is it is hard to absorb by human cells. To solve this problem, a paper which indicated a curcumin carrier protein called αS1-casein showed high binding affinity with curcumin. We then utilized this property of αS1-casein to create a curcumin bio-sensor.

αS1-casein

     Caseins are proteins commonly found in mammalian milk and is a mixture of four phosphoprotein. One of the phosphoprotein is αS1-casein, which contains no disulfide bonds and relatively little tertiary structure. As their primary function is nutritional, binding large amounts of calcium, zinc and other biologically important metals, amino acid substitutions or deletions have little impact on function.

The Binding Between Curcumin and αS1-casein

     According to the reference, we found how curcumin bind with αS1-casein. Curcumin has a β-diketone moiety, flanked by two phenolic groups, that helps bind to proteins through hydrophobic interactions. The carboxyl-terminal of αS1-casein (100−199 residues) predominantly contains hydrophobic amino acids, which may be involved in the binding process. Residues 14−24 in αS1-casein are hydrophobic in nature and form a surface “patch” of hydrophobicity. Curcumin may probably be binding at these two sites, with two different ranges of affinity through hydrophobic interaction. One with high affinity [(2.01 ± 0.6) × 106 M−1] and the other with low affinity [(6.3 ± 0.4) × 104 M−1].

Establishment

Cloning of αS1-casein

     We got the amino acid sequence of αS1-casein from NCBI, and adjusted the DNA sequence to optimize its expression in E. coli. We also added a GS linker ahead to enhance the function of sensor and synthesized the gblock fragment from IDT.

     First of our cloning process, we did PCR to acquire the product of GS Linker-αS1 casein DNA fragment. (Fig. 2) Next, we digested the fragment and ligated it to pET30a vector. Finally, we transformed the plasmid with GS Linker-αS1 casein to E. coli. BL21 DE3 and made protein expression.

Figure 2: PCR product of αS1-casein

Chip Production

1. Dip the gold chips in 10mM Mua, RT for 4hrs.

2. Wash the chips with 95% EtOH three times and dry.

3. Add EDC+NHS mixture (100+100mM in DDW) on chips, RT for 1hrs.

4. DDW rinse the chips and dry.

5. Add αS1-casein on chips, RT for 1hrs

6. Wash with PBS three times and dry.

7. Dip the chips in blocking solution, RT for 1.5hrs.

8. Wash with PBS three times and dry.

Detection Method

Electrochemistry Introduction

     After choosing αS1-casein as our bio-sensor, we used Differential Pulse Voltammetry (DPV) method to detect curcumin containment.

Differential Pulse Voltammetry

     DPV uses the difference between before and after the pulse application in order to solve the influence of background noise. Thus, the sensitivity and stability of DPV is better than the common method of CV(cyclic voltammetry). We hope we can use this method to observe the obvious current change when detecting curcumin and create more accurate standard curve in advance.

Measurement Protocol of Curcumin Bio-sensor

1. Add the diluted curcumin samples on our bio-sensor to react for 30min.

2. Rinse with wash buffer and dry the chips.

3. Wash the reference and counter electrodes with DDW, and dry them.

4. Set up the three electrodes system within electrochemical cell. (Fig. 3, left)

5. Use the prototype of electrochemical machine to measure the DPV method. (Fig.3, right)

Figure 3. Three electrode system (left) and prototype of electrochemical machine (right).

Result

Pretest of Differential Pulse Voltammetry (DPV)

     First of all, we used DPV to check whether our bio-sensor can detect curcumin. As we mentioned above, DPV method tested the current change when curcumin binding. Therefore, we compared the two kinds of chips, the red line was the general chips, and the blue line was the chips modified with αS1-casein (Fig. 4). As long as our bio-sensor contacted with the standard samples of curcumin (from Sigma Aldrich), its current value would become larger. We could easily observe that our bio-sensor with αS1-casein produced more fierce Redox reaction than another. Figure 4 also represented that the bio-sensor modified with αS1-casein have more effect of detecting curcumin than none.

Figure 4. Pretest of curcumin bio-sensor in DPV. (Reduction)

Applications

1. Determine Standard Curve and Create the Formula

     We used the standard samples of curcumin and diluted it in dilution buffer. Next, we detected the diluted curcumin samples by curcumin bio-sensor and made the standard curve. Since it was the logarithmic function, we put the curcumin concentration into the natural logarithm, and did the polynomial curve fitting. We obtained the result in Figure 5, R2=0.9995. This represented the prediction of real samples from the following formula was really close to real value.

$$y = -2\cdot 10^{-5}x^5+8\cdot 10^{-4}x^4-0.0127x^3+0.082x^2-0.049x+1.5\cdot 10^{-3}$$

Table 1: Variables of standard curve function.

Symbol

Unit

Explanation

x

uM / nM

Curcumin Concentration

y

A

DPV Peak Current

Figure 5: The standard curve and the concentration formula of curcumin.

2. The Detection Result of Real Samples from Turmeric Root

     Our final goal is to predict the concentration of curcumin in real samples by the bio-sensor. Therefore, we prepared the most curcumin content part, the root of turmeric to pretest our bio-sensor. First of all, we milled the turmeric root and divided the powder into two groups. One of them was added with extraction buffer but not underwent the extraction protocol, and the other was added with extraction buffer but underwent the extraction process. The result (Fig. 6) showed only the sample which underwent the extraction process was able to be detected, which represented our sensor had strong specificity to curcumin. Moreover, our curcumin bio-sensor would not be disturbed even if taking the whole turmeric content to detect.

Figure 6: Detection of real samples from turmeric root.

3. Create a New Method to Detect Curcumin in Time

     In order to feedback our productivity model in time and make it more accurately, we want to find a way to detect curcumin instantly. We supposed that turmeric can also detect curcumin as well as the rhizome and other parts of turmeric.

     According to Plant Science, photosynthesis aids in the production of curcumin[3], so we selected the leaves as the test samples and detected it by DPV. Our sample divided into five groups: negative control, normal leaves, and turmeric leaves in three different areas. After estimating the turmeric concentration by using the standard curve formula obtained before, we got the result in the figure below (Fig. 7).

     From this result, obviously, we can see the negative control--normal leaves contain no curcumin. On the other hand, tumeric grown in area 1, 2 and 3 shows curcumin content. It means that we can use turmeric leaves to detect curcumin instead of using curcumin rhizome, and each sample of the curcumin concentration is different. Thus, we can reasonably speculate that the curcumin concentration of the turmeric rhizome is relative with the curcumin concentration of turmeric leaves. Next, we must start a large number of experiments with curcumin in the same turmeric leaves and rhizome to create a new model to improve the feedback system of the entire productivity model. This is what we want to achieve in the future.

Figure 7: Detection of curcumin content in turmeric leaf samples from different areas.

Conclusion

     In our conclusion, we use the electrochemistry method, DPV, to prove that we can detect curcumin if we use the gold chips to connect with αS1-casein as biosensor. We also created a standard curve and generated an accurate formula to support the prediction of curcumin concentration in real samples. Moreover, we certify the specificity is perfect in real samples. Finally, we successfully detected curcumin in turmeric leaves. Based on these experiments, we created a new curcumin biosensor. In order to improve our productivity model, we designed a new method to detect curcumin concentration quickly and consistently. Our BioBrick and device allow for calibration of our productivity model to better demonstrate the efficacy of our soil regulation system. Click here to see how our applied system improves turmeric plants on our farm!

References

1. Gupta, S. C., et al. (2012). "Discovery of curcumin, a component of golden spice, and its miraculous biological activities." Clin Exp Pharmacol Physiol 39(3): 283-299.

2. Le Parc, A., et al. (2010). "α(S1)-casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly membrane-associated form." BMC Cell Biology 11: 65-65.

3. Sneharani, A. H., et al. (2009). "Interaction of αS1-Casein with Curcumin and Its Biological Implications." Journal of Agricultural and Food Chemistry 57(21): 10386-10391.

4. Teresa Treweek (September 12th 2012). Alpha-Casein as a Molecular Chaperone, Milk Protein Walter L. Hurley, IntechOpen, DOI: 10.5772/48348.

5. Palazon, F.; Montenegro Benavides, C.; Léonard, D.; Souteyrand, É.; Chevolot, Y.; Cloarec, J. P. Carbodiimide/NHS derivatization of COOH-terminated SAMs: activation or byproduct formation?. Langmuir, 2014, 30, 4545-4550.

6. Sneharani, A. H., et al. (2009). "Interaction of αS1-Casein with Curcumin and Its Biological Implications." Journal of Agricultural and Food Chemistry 57(21): 10386-10391.

7. Palazon, F.; Montenegro Benavides, C.; Leonard, D.; Souteyrand, E.; Chevolot, Y.; Cloarec, J. P. Carbodiimide/NHS derivatization of COOH-terminated SAMs: activation or byproduct formation?. Langmuir, 2014, 30, 4545-4550.

8. Dixit, D. and N. K. Srivastava (2000). "Distribution of photosynthetically fixed 14CO2 into curcumin and essential oil in relation to primary metabolites in developing turmeric (Curcuma longa) leaves1CIMAP Communication No. 99-28J.1." Plant Science 152(2): 165-171.

Template