Difference between revisions of "Team:NCTU Formosa/InterLab"

 
(4 intermediate revisions by 2 users not shown)
Line 151: Line 151:
 
}
 
}
  
.seemore_1,.seemore_2,.seemore_3,.seemore_4{
+
.seemore_1,.seemore_2,.seemore_3,.seemore_4,.close_1,.close_2,.close_3,.close_4{
 
   width: 12%;
 
   width: 12%;
 
   margin-left: 44%;
 
   margin-left: 44%;
Line 159: Line 159:
 
}
 
}
  
.seemore_1:hover,.seemore_2:hover,.seemore_3:hover,.seemore_4:hover {
+
.seemore_1:hover,.seemore_2:hover,.seemore_3:hover,.close_1:hover,.close_2:hover,.close_3:hover,.close_4:hover {
 
   transform: scale(1.1);
 
   transform: scale(1.1);
 
}
 
}
Line 217: Line 217:
 
     <div class="text">
 
     <div class="text">
 
       <p>
 
       <p>
         &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Our first calibration uses LUDOX CL-X solution to convert absorbance (ABS<sub>600</sub>) to an equivalent measurement of optical density (O.D.<sub>600nm</sub>). This is necessary because absorbance measurements are dependent on the depth of the fluid sample, while O.D.<sub>600nm</sub> values obtained from a standard spectrophotometer depend only on cuvette width, which is constant. This calibration eliminates measurement variations specific to our plate reader and returns standard values of optical density that other labs can reference.
+
         &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Our first calibration uses LUDOX CL-X solution to convert absorbance (ABS<sub>600</sub>) to an equivalent measurement of optical density (OD 600). This is necessary because absorbance measurements are dependent on the depth of the fluid sample, while OD 600 values obtained from a standard spectrophotometer depend only on cuvette width, which is constant. This calibration eliminates measurement variations specific to our plate reader and returns standard values of optical density that other labs can reference.
 
       </p>
 
       </p>
 
     </div>
 
     </div>
Line 642: Line 642:
 
       Figure 2: The curve describing the relationship between particles and Abs<sub>600</sub> in logarithm scale.
 
       Figure 2: The curve describing the relationship between particles and Abs<sub>600</sub> in logarithm scale.
 
     </div>
 
     </div>
 +
    <img src="https://static.igem.org/mediawiki/2018/2/26/T--NCTU_Formosa--Close.png" class="close_1">
 
     </div>
 
     </div>
 
     <img src="https://static.igem.org/mediawiki/2018/2/24/T--NCTU_Formosa--Seemore2.png" class="seemore_1">
 
     <img src="https://static.igem.org/mediawiki/2018/2/24/T--NCTU_Formosa--Seemore2.png" class="seemore_1">
Line 1,001: Line 1,002:
 
       Figure 4: The curve describing the relationship between fluorescence and fluorescein concentration in logarithm scale.
 
       Figure 4: The curve describing the relationship between fluorescence and fluorescein concentration in logarithm scale.
 
     </div>
 
     </div>
 +
    <img src="https://static.igem.org/mediawiki/2018/2/26/T--NCTU_Formosa--Close.png" class="close_2">
 
     </div>
 
     </div>
 
     <img src="https://static.igem.org/mediawiki/2018/2/24/T--NCTU_Formosa--Seemore2.png" class="seemore_2">
 
     <img src="https://static.igem.org/mediawiki/2018/2/24/T--NCTU_Formosa--Seemore2.png" class="seemore_2">
Line 1,006: Line 1,008:
 
   <div class="sec sec_5">
 
   <div class="sec sec_5">
 
     <p class="title_2">Cell Measurement</p>
 
     <p class="title_2">Cell Measurement</p>
     <div class="text"><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Once our calibrations were complete, we moved on to the cell measurement protocol. First we transformed competent DH5-alpha with the 8 plasmids provided in the kit. After incubating for 16 hours at 37 degrees Celsius and 220 rpm, we diluted the solutions to an Abs<sub>600</sub> value of 0.02 before measuring both O.D.<sub>600nm</sub> as well as fluorescence at 0 hours and 6 hours. Then, using our previous calibrations we converted fluorescence per OD to fluorescence per particle.</p></div>
+
     <div class="text"><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Once our calibrations were complete, we moved on to the cell measurement protocol. First we transformed competent DH5-alpha with the 8 plasmids provided in the kit. After incubating for 16 hours at 37 degrees Celsius and 220 rpm, we diluted the solutions to an Abs<sub>600</sub> value of 0.02 before measuring both OD 600 as well as fluorescence at 0 hours and 6 hours. Then, using our previous calibrations we converted fluorescence per OD to fluorescence per particle.</p></div>
 
     <div class="show_3">
 
     <div class="show_3">
 
     <div class="table">
 
     <div class="table">
Line 5,522: Line 5,524:
 
       </table>
 
       </table>
 
     </div>
 
     </div>
 +
    <img src="https://static.igem.org/mediawiki/2018/2/26/T--NCTU_Formosa--Close.png" class="close_3">
 
     </div>
 
     </div>
 
     <img src="https://static.igem.org/mediawiki/2018/2/24/T--NCTU_Formosa--Seemore2.png" class="seemore_3">
 
     <img src="https://static.igem.org/mediawiki/2018/2/24/T--NCTU_Formosa--Seemore2.png" class="seemore_3">
Line 5,527: Line 5,530:
 
   <div class="sec sec_6">
 
   <div class="sec sec_6">
 
     <p class="title_2">Colony Formig Units</p>
 
     <p class="title_2">Colony Formig Units</p>
     <div class="text"><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Finally, we test whether our cell measurement conversion was accurate. Because our conversions are based on the calibrations we performed using the silica beads, we observe actual colony forming units on plates and compare with our theoretical conversions. To do this, we incubated 2 samples of both positive and negative control overnight, then diluted 1 mL of the culture to an O.D.<sub>600nm</sub> value of 0.1 and prepared a series dilution. We then spread the final 3 dilutions of each sample onto plates and counted the CFUs. Because we started with an O.D.<sub>600nm</sub> value of 0.1, we know the OD values of the subsequent dilutions and can compare the resulting number of CFUs to our conversions from our cell measurement protocol.</p></div>
+
     <div class="text"><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Finally, we test whether our cell measurement conversion was accurate. Because our conversions are based on the calibrations we performed using the silica beads, we observe actual colony forming units on plates and compare with our theoretical conversions. To do this, we incubated 2 samples of both positive and negative control overnight, then diluted 1 mL of the culture to an OD 600 value of 0.1 and prepared a series dilution. We then spread the final 3 dilutions of each sample onto plates and counted the CFUs. Because we started with an OD 600 value of 0.1, we know the OD values of the subsequent dilutions and can compare the resulting number of CFUs to our conversions from our cell measurement protocol.</p></div>
 
     <div class="show_4">
 
     <div class="show_4">
 
     <div class="table">
 
     <div class="table">
Line 5,534: Line 5,537:
 
           <p class="explanation">
 
           <p class="explanation">
 
             <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg>
 
             <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg>
             Table 20: The CFU which iGEM interlab want our team to calculate.
+
             Table 20: The CFU results of different samples.
 
           </p>
 
           </p>
 
         </caption>
 
         </caption>
 +
        <thead>
 +
          <tr>
 +
            <th><p>Sample</p></th>
 +
            <th><p>CFU Concerntration</p></th>
 +
          </tr>
 +
        </thead>
 
      <tbody>
 
      <tbody>
 
      <tr>
 
      <tr>
             <td>
+
             <td><p style="white-space: nowrap;">Positive Colony 1 Triplicate 1</p></td>
              <p style="white-space: nowrap;">Positive Colony 1 Triplicate 1</p>
+
             <td><p>1.8E+07 CFU/mL</p></td>
            </td>
+
             <td>
+
              <p>1.8E+07 CFU/mL</p>
+
            </td>
+
 
           </tr>
 
           </tr>
      <td>
+
          <tr>
              <p style="white-space: nowrap;">Positive Colony 1 Triplicate 2</p>
+
        <td><p style="white-space: nowrap;">Positive Colony 1 Triplicate 2</p></td>
            </td>
+
             <td><p>2.56E+07 CFU/mL</p></td>
             <td>
+
              <p>2.56E+07 CFU/mL</p>
+
            </td>
+
 
           </tr>
 
           </tr>
    <td>
+
          <tr>
              <p style="white-space: nowrap;">Positive Colony 1 Triplicate 3</p>
+
        <td><p style="white-space: nowrap;">Positive Colony 1 Triplicate 3</p></td>
            </td>
+
             <td><p>5.6E+06 CFU/mL</p></td>
             <td>
+
              <p>5.6E+06 CFU/mL</p>
+
            </td>
+
 
           </tr>
 
           </tr>
    <td>
+
          <tr>
              <p style="white-space: nowrap;">Positive Colony 2 Triplicate 1</p>
+
        <td><p style="white-space: nowrap;">Positive Colony 2 Triplicate 1</p></td>
            </td>
+
             <td><p>7.44E+07 CFU/mL</p></td>
             <td>
+
              <p>7.44E+07 CFU/mL</p>
+
            </td>
+
 
           </tr>
 
           </tr>
  </tr>
+
          <tr>
    <td>
+
        <td><p style="white-space: nowrap;">Positive Colony 2 Triplicate 2</p></td>
              <p style="white-space: nowrap;">Positive Colony 2 Triplicate 2</p>
+
             <td><p>1.04E+07 CFU/mL</p></td>
            </td>
+
             <td>
+
              <p>1.04E+07 CFU/mL</p>
+
            </td>
+
 
           </tr>
 
           </tr>
  </tr>
+
          <tr>
    <td>
+
        <td><p style="white-space: nowrap;">Positive Colony 2 Triplicate 3</p></td>
              <p style="white-space: nowrap;">Positive Colony 2 Triplicate 3</p>
+
             <td><p>2.4E+06 CFU/mL</p></td>
            </td>
+
             <td>
+
              <p>2.4E+06 CFU/mL</p>
+
            </td>
+
 
           </tr>
 
           </tr>
  </tr>
+
          <tr>
    <td>
+
        <td><p style="white-space: nowrap;">Negative Colony 1 Triplicate 1</p></td>
              <p style="white-space: nowrap;">Negative Colony 1 Triplicate 1</p>
+
             <td><p>2.23E+07 CFU/mL</p></td>
            </td>
+
             <td>
+
              <p>2.23E+07 CFU/mL</p>
+
            </td>
+
 
           </tr>
 
           </tr>
  </tr>
+
          <tr>
    <td>
+
        <td><p style="white-space: nowrap;">Negative Colony 1 Triplicate 2</p></td>
              <p style="white-space: nowrap;">Negative Colony 1 Triplicate 2</p>
+
             <td><p>9.84E+07 CFU/mL</p></td>
            </td>
+
             <td>
+
              <p>9.84E+07 CFU/mL</p>
+
            </td>
+
 
           </tr>
 
           </tr>
  </tr>
+
          <tr>
    <td>
+
        <td><p style="white-space: nowrap;">Negative Colony 1 Triplicate 3</p></td>
              <p style="white-space: nowrap;">Negative Colony 1 Triplicate 3</p>
+
             <td><p>1.6E+06 CFU/mL</p></td>
            </td>
+
             <td>
+
              <p>1.6E+06 CFU/mL</p>
+
            </td>
+
 
           </tr>
 
           </tr>
  </tr>
+
          <tr>
    <td>
+
        <td><p style="white-space: nowrap;">Negative Colony 2 Triplicate 1</p></td>
              <p style="white-space: nowrap;">Negative Colony 2 Triplicate 1</p>
+
             <td><p>1.376E+08 CFU/mL</p></td>
            </td>
+
             <td>
+
              <p>1.376E+08 CFU/mL</p>
+
            </td>
+
 
           </tr>
 
           </tr>
  </tr>
+
          <tr>
    <td>
+
        <td><p style="white-space: nowrap;">Negative Colony 2 Triplicate 2</p></td>
              <p style="white-space: nowrap;">Negative Colony 2 Triplicate 2</p>
+
             <td><p>1.008E+08 CFU/mL</p></td>
            </td>
+
           </tr>
             <td>
+
          <tr>
              <p>1.008E+08 CFU/mL</p>
+
        <td><p style="white-space: nowrap;">Negative Colony 2 Triplicate 1</p></td>
            </td>
+
             <td><p>2.23E+07 CFU/mL</p></td>
           </tr></tr>
+
    <td>
+
              <p style="white-space: nowrap;">Negative Colony 2 Triplicate 1</p>
+
            </td>
+
             <td>
+
              <p>2.23E+07 CFU/mL</p>
+
            </td>
+
 
           </tr>
 
           </tr>
 
    </tbody>
 
    </tbody>
Line 6,277: Line 6,242:
 
       </table>
 
       </table>
 
  </div>
 
  </div>
 +
    <img src="https://static.igem.org/mediawiki/2018/2/26/T--NCTU_Formosa--Close.png" class="close_4">
 
     </div>
 
     </div>
 
     <img src="https://static.igem.org/mediawiki/2018/2/24/T--NCTU_Formosa--Seemore2.png" class="seemore_4">
 
     <img src="https://static.igem.org/mediawiki/2018/2/24/T--NCTU_Formosa--Seemore2.png" class="seemore_4">
Line 6,300: Line 6,266:
 
<script>
 
<script>
 
$(".seemore_1").click(function(){
 
$(".seemore_1").click(function(){
   $(".show_1").slideToggle(800);
+
   $(".show_1").show(800);
 +
  $(".seemore_1").hide();
 +
});
 +
$(".close_1").click(function(){
 +
  $(".show_1").hide(800);
 +
  $(".seemore_1").show();
 
});
 
});
 
$(".seemore_2").click(function(){
 
$(".seemore_2").click(function(){
   $(".show_2").slideToggle(800);
+
   $(".show_2").show(800);
 +
  $(".seemore_2").hide();
 +
});
 +
$(".close_2").click(function(){
 +
  $(".show_2").hide(800);
 +
  $(".seemore_2").show();
 
});
 
});
 
$(".seemore_3").click(function(){
 
$(".seemore_3").click(function(){
   $(".show_3").slideToggle(800);
+
   $(".show_3").show(1500);
 +
  $(".seemore_3").hide();
 +
});
 +
$(".close_3").click(function(){
 +
  $(".show_3").hide(1500);
 +
  $(".seemore_3").show();
 
});
 
});
 
$(".seemore_4").click(function(){
 
$(".seemore_4").click(function(){
   $(".show_4").slideToggle(800);
+
   $(".show_4").show(800);
 +
  $(".seemore_4").hide();
 +
});
 +
$(".close_4").click(function(){
 +
  $(".show_4").hide(800);
 +
  $(".seemore_4").show();
 
});
 
});
 
</script>
 
</script>

Latest revision as of 13:46, 7 December 2018

Navigation Bar

Interlab

Overview

     This year, we contributed to the competition by participating in the 5th iGEM International Laboratory Study. As with previous years, the goal of the study is to standardize measurement techniques so that synthetic biology labs all over the world can reference and compare collected data reliably. This year’s focus is on converting fluorescence readings into absolute cell counts instead of relying on OD measurements, which can often vary from lab to lab. The materials required to perform this year’s interlab study include a plate reader capable of measuring fluorescence and competent E. coli DH5-alpha. We used a BMG labtech Clariostar plate reader along with black 96-well plates with transparent bottoms, and prepared DH5-alpha in glycerol stock. Using the rest of the required materials found in the iGEM interlab kit, we were able to test 8 plasmids consisting of a positive control, a negative control and 6 test constructs. We first performed calibrations to obtain standard values for our data.

Calibration 1 – LUDOX CL-X

     Our first calibration uses LUDOX CL-X solution to convert absorbance (ABS600) to an equivalent measurement of optical density (OD 600). This is necessary because absorbance measurements are dependent on the depth of the fluid sample, while OD 600 values obtained from a standard spectrophotometer depend only on cuvette width, which is constant. This calibration eliminates measurement variations specific to our plate reader and returns standard values of optical density that other labs can reference.

Table 1: The data collected by LUDOX CL-X to calibrate OD600.

LUDOX CL-X

H2O

Replicate 1

0.085

0.042

Replicate 2

0.088

0.063

Replicate 3

0.086

0.046

Replicate 4

0.085

0.054

Arith. Mean

0.086

0.051

Corrected Abs600

0.035

Reference OD600

0.063

OD600/Abs600

1.813

Calibration 2 – Microsphere Particle Standard Curve

     For the next calibration, we prepared a dilution series of the silica microspheres found in the iGEM interlab kit. Because the concentration (particles per volume) is known, and because the microspheres have roughly the same size and optical qualities to bacterial cells, we can convert Abs600 values to number of cells.

Table 2: The data collected by silica beads to find the relationship between particles and Abs600.

Number of particles

2.35E+08

1.18E+08

5.88E+07

2.94E+07

1.47E+07

7.35E+06

3.68E+06

1.84E+06

9.19E+05

4.6E+05

2.3E+05

0

Replicate 1

0.884

0.536

0.277

0.231

0.087

0.057

0.045

0.036

0.036

0.032

0.030

0.029

Replicate 2

0.897

0.430

0.223

0.133

0.077

0.056

0.043

0.036

0.033

0.033

0.029

0.030

Replicate 3

1.082

0.417

0.226

0.124

0.075

0.054

0.061

0.039

0.037

0.067

0.033

0.029

Replicate 4

1.484

0.596

0.26

0.213

0.089

0.057

0.041

0.037

0.033

0.032

0.03

0.031

Arith. Mean

1.087

0.495

0.247

0.175

0.082

0.056

0.048

0.037

0.035

0.041

0.031

0.030

Arith. STDEV

0.280

0.086

0.026

0.055

0.007

0.001

0.009

0.001

0.002

0.017

0.002

0.001

Arith. Net Mean

1.057

0.465

0.217

0.146

0.052

0.026

0.018

0.007

0.005

0.011

0.001

Figure 1: The curve describing the relationship between particles and Abs600.
Figure 2: The curve describing the relationship between particles and Abs600 in logarithm scale.

Calibration 3 – Fluorescence Standard Curve

     Our final calibration tackles the problem of inconsistencies in fluorescence measurements from model to model. In order to standardize our fluorescence values we create a standard fluorescence curve using the protein fluorescein. Measuring the fluorescence of a dilution series of fluorescein allows us to obtain a curve that describes the relationship between fluorescence values and fluorescein concentration.

Table 3: The data collected by fluorescein to find the relationship between fluorescence and fluorescein concentration.

Fluorescein (uM)

10

5

2.5

1.25

0.625

0.313

0.156

0.078

0.039

0.0195

0.0098

0

Replicate 1

148873

85179

41074

23229

12491

5683

2437

1237

426

180

84

25

Replicate 2

151337

79470

41795

20500

10628

5217

2720

1378

684

368

173

22

Replicate 3

150211

84298

44059

22273

11429

5658

2892

1430

715

357

179

25

Replicate 4

153849

84629

45004

23125

11754

5867

2827

1548

890

425

235

21

Arith. Mean

1.511E+05

8.339E+04

4.298E+04

2.228E+04

1.158E+04

5.606E+03

2.719E+03

1.398E+03

6.788E+02

3.325E+02

1.678E+02

2.325E+01

Arith. STDEV

2.110E+03

2.641E+03

1.853E+03

1.263E+03

7.723E+02

2.757E+02

2.009E+02

1.289E+02

1.914E+02

1.059E+02

6.243E+01

2.062E+00

Arith. Net Mean

1.510E+05

8.337E+04

4.296E+04

2.226E+04

1.155E+04

5.583E+03

2.696E+03

1.375E+03

6.555E+02

3.093E+02

1.445E+02

Figure 3: The curve describing the relationship between fluorescence and fluorescein concentration.
Figure 4: The curve describing the relationship between fluorescence and fluorescein concentration in logarithm scale.

Cell Measurement

     Once our calibrations were complete, we moved on to the cell measurement protocol. First we transformed competent DH5-alpha with the 8 plasmids provided in the kit. After incubating for 16 hours at 37 degrees Celsius and 220 rpm, we diluted the solutions to an Abs600 value of 0.02 before measuring both OD 600 as well as fluorescence at 0 hours and 6 hours. Then, using our previous calibrations we converted fluorescence per OD to fluorescence per particle.

Table 4: Fluorescence Raw Readings in zero hour.

Hour 0:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

LB + Cr (blank)

Colony 1, Replicate 1

906

1726

1167

777

1614

1026

1504

856

776

Colony 1, Replicate 2

792

1682

1285

827

1583

1328

1346

751

813

Colony 1, Replicate 3

886

1617

1403

910

1366

1141

763

766

762

Colony 1, Replicate 4

812

1515

1405

861

1525

1202

1220

794

789

Colony 2, Replicate 1

851

1661

1466

1012

1332

1035

1265

811

875

Colony 2, Replicate 2

773

1560

1569

1074

1296

1089

1192

771

922

Colony 2, Replicate 3

833

1590

1469

904

1333

1091

1295

768

862

Colony 2, Replicate 4

745

1695

1519

781

1278

812

1136

848

991

Table 5: Fluorescence Raw Readings in sixth hour.

Hour 6:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

LB + Cr (blank)

Colony 1, Replicate 1

975

5090

1471

1690

8573

1503

2042

942

894

Colony 1, Replicate 2

803

4603

1440

1601

8282

1476

1920

932

928

Colony 1, Replicate 3

926

4978

1427

1609

8246

1395

1847

882

1001

Colony 1, Replicate 4

850

4993

1566

1642

8688

1384

2113

1106

925

Colony 2, Replicate 1

1042

5576

1602

1171

4104

1276

1674

1063

940

Colony 2, Replicate 2

968

5312

1510

1188

4243

1368

1498

1111

893

Colony 2, Replicate 3

958

4621

1601

1343

4184

1419

1741

1136

937

Colony 2, Replicate 4

954

4957

1579

1095

3781

1255

1720

1036

984

Table 6: Abs600 Raw Readings in zero hour.

Hour 0:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

LB + Cr (blank)

Colony 1, Replicate 1

0.089

0.088

0.083

0.078

0.066

0.068

0.07

0.227

0.034

Colony 1, Replicate 2

0.088

0.083

0.082

0.078

0.067

0.068

0.064

0.234

0.034

Colony 1, Replicate 3

0.087

0.08

0.082

0.08

0.061

0.066

0.036

0.065

0.035

Colony 1, Replicate 4

0.085

0.081

0.081

0.077

0.062

0.061

0.045

0.068

0.034

Colony 2, Replicate 1

0.08

0.091

0.079

0.082

0.07

0.073

0.073

0.298

0.036

Colony 2, Replicate 2

0.086

0.081

0.075

0.087

0.067

0.071

0.201

0.297

0.035

Colony 2, Replicate 3

0.082

0.085

0.074

0.082

0.07

0.069

0.075

0.257

0.033

Colony 2, Replicate 4

0.086

0.086

0.078

0.083

0.07

0.068

0.07

0.098

0.034

Table 7: Abs600 Raw Readings in sixth hour.

Hour 6:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

LB + Cr (blank)

Colony 1, Replicate 1

0.762

0.459

0.467

0.497

0.78

0.632

0.652

0.539

0.038

Colony 1, Replicate 2

0.644

0.44

0.46

0.544

0.751

0.615

0.642

0.576

0.035

Colony 1, Replicate 3

0.653

0.475

0.558

0.538

0.85

0.613

0.661

0.589

0.04

Colony 1, Replicate 4

0.676

0.586

0.561

0.576

0.803

0.654

0.664

0.528

0.045

Colony 2, Replicate 1

0.559

0.507

0.476

0.457

0.498

0.743

0.687

0.655

0.036

Colony 2, Replicate 2

0.686

0.514

0.453

0.458

0.524

0.693

0.799

0.62

0.041

Colony 2, Replicate 3

0.655

0.553

0.512

0.519

0.607

0.889

0.86

0.648

0.037

Colony 2, Replicate 4

0.66

0.601

0.463

0.541

0.575

0.819

0.779

0.67

0.035

Table 8: uM Fluorescein / OD in zero hour.

Hour 0:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Colony 1, Replicate 1

0.074

0.552

0.250

0.001

0.822

0.231

0.634

0.013

Colony 1, Replicate 2

-0.012

0.556

0.309

0.010

0.732

0.475

0.557

-0.010

Colony 1, Replicate 3

0.075

0.596

0.428

0.103

0.729

0.384

0.031

0.004

Colony 1, Replicate 4

0.014

0.485

0.411

0.053

0.825

0.480

1.229

0.005

Colony 2, Replicate 1

-0.017

0.448

0.431

0.093

0.422

0.136

0.331

-0.008

Colony 2, Replicate 2

-0.092

0.435

0.507

0.092

0.367

0.146

0.051

-0.018

Colony 2, Replicate 3

-0.019

0.439

0.464

0.027

0.399

0.200

0.323

-0.013

Colony 2, Replicate 4

-0.148

0.425

0.376

-0.134

0.250

-0.165

0.126

-0.070

Table 9: uM Fluorescein / OD in sixth hour

Hour 6:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Colony 1, Replicate 1

0.004

0.313

0.042

0.051

0.325

0.032

0.059

0.003

Colony 1, Replicate 2

-0.006

0.285

0.038

0.044

0.322

0.030

0.051

0.000

Colony 1, Replicate 3

-0.004

0.287

0.026

0.040

0.281

0.022

0.043

-0.007

Colony 1, Replicate 4

-0.004

0.236

0.039

0.049

0.321

0.024

0.060

0.012

Colony 2, Replicate 1

0.006

0.309

0.051

0.017

0.215

0.015

0.035

0.006

Colony 2, Replicate 2

0.004

0.293

0.044

0.022

0.218

0.023

0.025

0.012

Colony 2, Replicate 3

0.001

0.224

0.042

0.026

0.179

0.018

0.031

0.010

Colony 2, Replicate 4

-0.002

0.220

0.038

0.007

0.163

0.011

0.031

0.003

Table 10: Net Fluorescein a.u. in zero hour.

Hour 0:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Colony 1, Replicate 1

130.00

950.00

391.00

1.00

838.00

250.00

728.00

80.00

Colony 1, Replicate 2

-21.00

869.00

472.00

14.00

770.00

515.00

533.00

-62.00

Colony 1, Replicate 3

124.00

855.00

641.00

148.00

604.00

379.00

1.00

4.00

Colony 1, Replicate 4

23.00

726.00

616.00

72.00

736.00

413.00

431.00

5.00

Colony 2, Replicate 1

-24.00

786.00

591.00

137.00

457.00

160.00

390.00

-64.00

Colony 2, Replicate 2

-149.00

638.00

647.00

152.00

374.00

167.00

270.00

-151.00

Colony 2, Replicate 3

-29.00

728.00

607.00

42.00

471.00

229.00

433.00

-94.00

Colony 2, Replicate 4

-246.00

704.00

528.00

-210.00

287.00

-179.00

145.00

-143.00

Table 11: Net Fluorescein a.u. in sixth hour.

Hour 6:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Colony 1, Replicate 1

81.00

4196.00

577.00

708.00

7679.00

609.00

1148.00

48.00

Colony 1, Replicate 2

-125.00

3675.00

512.00

582.00

7354.00

548.00

992.00

4.00

Colony 1, Replicate 3

-75.00

3977.00

426.00

600.00

7245.00

394.00

846.00

-119.00

Colony 1, Replicate 4

-75.00

4068.00

641.00

654.00

7763.00

459.00

1188.00

181.00

Colony 2, Replicate 1

102.00

4636.00

750.00

231.00

3164.00

336.00

734.00

123.00

Colony 2, Replicate 2

75.00

4419.00

708.00

295.00

3350.00

475.00

605.00

218.00

Colony 2, Replicate 3

21.00

3684.00

672.00

406.00

3247.00

482.00

804.00

199.00

Colony 2, Replicate 4

-30.00

3973.00

658.00

111.00

2797.00

271.00

736.00

52.00

Table 12: Net Abs600 in zero hour.

Hour 0:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Colony 1, Replicate 1

0.055

0.054

0.049

0.044

0.032

0.034

0.036

0.193

Colony 1, Replicate 2

0.054

0.049

0.048

0.044

0.033

0.034

0.030

0.200

Colony 1, Replicate 3

0.052

0.045

0.047

0.045

0.026

0.031

0.001

0.030

Colony 1, Replicate 4

0.051

0.047

0.047

0.043

0.028

0.027

0.011

0.034

Colony 2, Replicate 1

0.044

0.055

0.043

0.046

0.034

0.037

0.037

0.262

Colony 2, Replicate 2

0.051

0.046

0.040

0.052

0.032

0.036

0.166

0.262

Colony 2, Replicate 3

0.049

0.052

0.041

0.049

0.037

0.036

0.042

0.224

Colony 2, Replicate 4

0.052

0.052

0.044

0.049

0.036

0.034

0.036

0.064

Table 13: Net Abs600 in sixth hour.

Hour 6:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Colony 1, Replicate 1

0.724

0.421

0.429

0.438

0.742

0.594

0.614

0.501

Colony 1, Replicate 2

0.609

0.405

0.425

0.418

0.716

0.580

0.607

0.541

Colony 1, Replicate 3

0.613

0.435

0.518

0.472

0.810

0.573

0.621

0.549

Colony 1, Replicate 4

0.631

0.541

0.516

0.418

0.758

0.609

0.619

0.483

Colony 2, Replicate 1

0.523

0.471

0.461

0.421

0.462

0.707

0.651

0.619

Colony 2, Replicate 2

0.645

0.473

0.503

0.417

0.483

0.652

0.758

0.579

Colony 2, Replicate 3

0.618

0.516

0.501

0.482

0.570

0.852

0.823

0.611

Colony 2, Replicate 4

0.625

0.566

0.541

0.506

0.540

0.784

0.744

0.635

Table 14: Molecules of equivalent fluorescein per particle in zero hour.

Hour 0:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Colony 1, Replicate 1

2.34E+04

9.45E+03

2.71E+01

2.53E+04

1.04E+04

2.85E+04

2.95E+03

0.00E+00

Colony 1, Replicate 2

2.36E+04

1.16E+04

3.88E+02

2.33E+04

2.08E+04

2.08E+04

-2.75E+03

0.00E+00

Colony 1, Replicate 3

2.45E+04

1.57E+04

3.42E+03

1.70E+04

1.80E+04

-1.12E+03

-3.06E+04

-1.20E+03

Colony 1, Replicate 4

1.81E+04

1.38E+04

-3.96E+02

2.01E+04

1.55E+04

1.70E+04

-9.79E+03

-3.36E+03

Colony 2, Replicate 1

1.79E+04

1.64E+04

2.78E+03

1.19E+04

4.42E+03

1.23E+04

-3.99E+03

-2.39E+02

Colony 2, Replicate 2

2.02E+04

1.84E+04

7.05E+03

1.11E+04

9.43E+03

1.22E+04

-7.29E+02

3.04E+02

Colony 2, Replicate 3

1.53E+04

1.30E+04

-2.82E+03

9.28E+03

3.59E+03

1.12E+04

-7.06E+03

-7.66E+02

Colony 2, Replicate 4

1.80E+04

1.35E+04

-6.35E+03

7.79E+03

-6.61E+03

5.67E+03

-5.28E+03

0.00E+00

Table 15: Molecules of equivalent fluorescein per particle in sixth hour.

Hour 6:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Colony 1, Replicate 1

1.49E+02

1.33E+04

1.79E+03

2.15E+03

1.38E+04

1.36E+03

2.49E+03

1.27E+02

Colony 1, Replicate 2

-2.73E+02

1.21E+04

1.60E+03

1.85E+03

1.37E+04

1.26E+03

2.17E+03

9.83E+00

Colony 1, Replicate 3

-1.63E+02

1.22E+04

1.09E+03

1.69E+03

1.19E+04

9.14E+02

1.81E+03

-2.88E+02

Colony 1, Replicate 4

-1.58E+02

1.00E+04

1.65E+03

2.08E+03

1.36E+04

1.00E+03

2.55E+03

4.98E+02

Colony 2, Replicate 1

2.59E+02

1.31E+04

2.16E+03

7.30E+02

9.11E+03

6.32E+02

1.50E+03

2.64E+02

Colony 2, Replicate 2

1.55E+02

1.24E+04

1.87E+03

9.41E+02

9.22E+03

9.69E+02

1.06E+03

5.01E+02

Colony 2, Replicate 3

4.52E+01

9.49E+03

1.78E+03

1.12E+03

7.57E+03

7.52E+02

1.30E+03

4.33E+02

Colony 2, Replicate 4

-6.38E+01

9.33E+03

1.62E+03

2.92E+02

6.89E+03

4.60E+02

1.32E+03

1.09E+02

Table 16: Net Fluorescein a.u. in zero hour.

Hour 0:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Colony 1, Replicate 1

950.00

391.00

1.00

838.00

250.00

728.00

80.00

0.00

Colony 1, Replicate 2

869.00

472.00

14.00

770.00

515.00

533.00

-62.00

0.00

Colony 1, Replicate 3

828.00

614.00

121.00

577.00

352.00

-26.00

-23.00

-27.00

Colony 1, Replicate 4

640.00

530.00

-14.00

650.00

327.00

345.00

-81.00

-86.00

Colony 2, Replicate 1

739.00

544.00

90.00

410.00

113.00

343.00

-111.00

-47.00

Colony 2, Replicate 2

698.00

707.00

212.00

434.00

227.00

330.00

-91.00

60.00

Colony 2, Replicate 3

599.00

478.00

-87.00

342.00

100.00

304.00

-223.00

-129.00

Colony 2, Replicate 4

704.00

528.00

-210.00

287.00

-179.00

145.00

-143.00

0.00

Table 17: Net Fluorescein a.u. in sixth hour.

Hour 6:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Colony 1, Replicate 1

81.00

4196.00

577.00

708.00

7679.00

609.00

1148.00

48.00

Colony 1, Replicate 2

-125.00

3675.00

512.00

582.00

7354.00

548.00

992.00

4.00

Colony 1, Replicate 3

-75.00

3977.00

426.00

600.00

7245.00

394.00

846.00

-119.00

Colony 1, Replicate 4

-75.00

4068.00

641.00

654.00

7763.00

459.00

1188.00

181.00

Colony 2, Replicate 1

102.00

4636.00

750.00

231.00

3164.00

336.00

734.00

123.00

Colony 2, Replicate 2

75.00

4419.00

708.00

295.00

3350.00

475.00

605.00

218.00

Colony 2, Replicate 3

21.00

3684.00

672.00

406.00

3247.00

482.00

804.00

199.00

Colony 2, Replicate 4

-30.00

3973.00

658.00

111.00

2797.00

271.00

736.00

52.00

Table 18: Net Abs600 in zero hour.

Hour 0:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Colony 1, Replicate 1

0.054

0.055

0.049

0.044

0.032

0.034

0.036

0.193

Colony 1, Replicate 2

0.049

0.054

0.048

0.044

0.033

0.034

0.030

0.200

Colony 1, Replicate 3

0.045

0.052

0.047

0.045

0.026

0.031

0.001

0.030

Colony 1, Replicate 4

0.047

0.051

0.047

0.043

0.028

0.027

0.011

0.034

Colony 2, Replicate 1

0.055

0.044

0.043

0.046

0.034

0.037

0.037

0.262

Colony 2, Replicate 2

0.046

0.051

0.040

0.052

0.032

0.036

0.166

0.262

Colony 2, Replicate 3

0.052

0.049

0.041

0.049

0.037

0.036

0.042

0.224

Colony 2, Replicate 4

0.052

0.052

0.044

0.049

0.036

0.034

0.036

0.064

Table 19: Net Abs600 in sixth hour.

Hour 6:

N. Control

P. Control

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Colony 1, Replicate 1

0.724

0.421

0.429

0.438

0.742

0.594

0.614

0.501

Colony 1, Replicate 2

0.609

0.405

0.425

0.418

0.716

0.580

0.607

0.541

Colony 1, Replicate 3

0.613

0.435

0.518

0.472

0.810

0.573

0.621

0.549

Colony 1, Replicate 4

0.631

0.541

0.516

0.418

0.758

0.609

0.619

0.483

Colony 2, Replicate 1

0.523

0.471

0.461

0.421

0.462

0.707

0.651

0.619

Colony 2, Replicate 2

0.645

0.473

0.503

0.417

0.483

0.652

0.758

0.579

Colony 2, Replicate 3

0.618

0.516

0.501

0.482

0.570

0.852

0.823

0.611

Colony 2, Replicate 4

0.625

0.566

0.541

0.506

0.540

0.784

0.744

0.635

Colony Formig Units

     Finally, we test whether our cell measurement conversion was accurate. Because our conversions are based on the calibrations we performed using the silica beads, we observe actual colony forming units on plates and compare with our theoretical conversions. To do this, we incubated 2 samples of both positive and negative control overnight, then diluted 1 mL of the culture to an OD 600 value of 0.1 and prepared a series dilution. We then spread the final 3 dilutions of each sample onto plates and counted the CFUs. Because we started with an OD 600 value of 0.1, we know the OD values of the subsequent dilutions and can compare the resulting number of CFUs to our conversions from our cell measurement protocol.

Table 20: The CFU results of different samples.

Sample

CFU Concerntration

Positive Colony 1 Triplicate 1

1.8E+07 CFU/mL

Positive Colony 1 Triplicate 2

2.56E+07 CFU/mL

Positive Colony 1 Triplicate 3

5.6E+06 CFU/mL

Positive Colony 2 Triplicate 1

7.44E+07 CFU/mL

Positive Colony 2 Triplicate 2

1.04E+07 CFU/mL

Positive Colony 2 Triplicate 3

2.4E+06 CFU/mL

Negative Colony 1 Triplicate 1

2.23E+07 CFU/mL

Negative Colony 1 Triplicate 2

9.84E+07 CFU/mL

Negative Colony 1 Triplicate 3

1.6E+06 CFU/mL

Negative Colony 2 Triplicate 1

1.376E+08 CFU/mL

Negative Colony 2 Triplicate 2

1.008E+08 CFU/mL

Negative Colony 2 Triplicate 1

2.23E+07 CFU/mL

Table 21: The original data of each sample.

Positive/Negative

Colony

Triplicate

Dilution

Data

Positive

Colony 1

Triplicate 1

Dilution 3

19

Positive

Colony 1

Triplicate 1

Dilution 4

23

Positive

Colony 1

Triplicate 1

Dilution 5

0

Positive

Colony 1

Triplicate 2

Dilution 3

44

Positive

Colony 1

Triplicate 2

Dilution 4

32

Positive

Colony 1

Triplicate 2

Dilution 5

0

Positive

Colony 1

Triplicate 3

Dilution 3

173

Positive

Colony 1

Triplicate 3

Dilution 4

7

Positive

Colony 1

Triplicate 3

Dilution 5

0

Positive

Colony 2

Triplicate 1

Dilution 3

20

Positive

Colony 2

Triplicate 1

Dilution 4

93

Positive

Colony 2

Triplicate 1

Dilution 5

2

Positive

Colony 2

Triplicate 2

Dilution 3

100

Positive

Colony 2

Triplicate 2

Dilution 4

13

Positive

Colony 2

Triplicate 2

Dilution 5

3

Positive

Colony 2

Triplicate 3

Dilution 3

3

Positive

Colony 2

Triplicate 3

Dilution 4

0

Positive

Colony 2

Triplicate 3

Dilution 5

0

Negative

Colony 1

Triplicate 1

Dilution 3

13

Negative

Colony 1

Triplicate 1

Dilution 4

29

Negative

Colony 1

Triplicate 1

Dilution 5

1368

Negative

Colony 1

Triplicate 2

Dilution 3

355

Negative

Colony 1

Triplicate 2

Dilution 4

123

Negative

Colony 1

Triplicate 2

Dilution 5

2

Negative

Colony 1

Triplicate 3

Dilution 3

431

Negative

Colony 1

Triplicate 3

Dilution 4

2

Negative

Colony 1

Triplicate 3

Dilution 5

1

Negative

Colony 2

Triplicate 1

Dilution 3

88

Negative

Colony 2

Triplicate 1

Dilution 4

172

Negative

Colony 2

Triplicate 1

Dilution 5

3

Negative

Colony 2

Triplicate 2

Dilution 3

370

Negative

Colony 2

Triplicate 2

Dilution 4

26

Negative

Colony 2

Triplicate 2

Dilution 5

1

Negative

Colony 2

Triplicate 3

Dilution 3

275

Negative

Colony 2

Triplicate 3

Dilution 4

29

Negative

Colony 2

Triplicate 3

Dilution 5

0

Extra credit – Flow Cytometry

     As an extra credit task, we also collected flow cytometry data using an ACEA NovoCyte Flow Cytometer as well as SpheroTech Rainbow Calibration Particles model URCP-38-2K. Flow cytometry provides an even more accurate method of counting particles.

Conclusion

     We hope our experimentation will help to improve the accessibility and comparability of reliable data in synthetic biology labs across the world. Thank you to iGEM for providing this opportunity to give back to the scientific community.

Template