Line 319: | Line 319: | ||
<h3>Reference</h3> | <h3>Reference</h3> | ||
<ol> | <ol> | ||
− | <li class="smallp">Fuyu G, Guoxia L, Xiaoyun Z, Jie Z, Zhen C and Yin L. Quantitative analysis of an engineered | + | <li class="smallp">Fuyu G, Guoxia L, Xiaoyun Z, Jie Z, Zhen C and Yin L. Quantitative analysis of an engineered CO<sub>2</sub>-fixing <i>Escherichia Coli</i> reveals great potential of heterotrophic CO2 fixation. Gong et al. Biotechnology for Biofuels, 2015, 8:86.</li> |
<li class="smallp">citric acid cycle from Brenda, web : https://www.brenda-enzymes.org/pathway_index.php?ecno=&brenda_ligand_id=Alpha-ketoglutarate&organism=Escherichia+coli&pathway=citric_acid_cycle&site=pathway</li> | <li class="smallp">citric acid cycle from Brenda, web : https://www.brenda-enzymes.org/pathway_index.php?ecno=&brenda_ligand_id=Alpha-ketoglutarate&organism=Escherichia+coli&pathway=citric_acid_cycle&site=pathway</li> | ||
<li class="smallp">Uwe Sauer, Bernhard J. E. The PEP—pyruvate—oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiology Reviews, Volume 29, Issue 4, 1 September 2005, Pages 765–794.</li> | <li class="smallp">Uwe Sauer, Bernhard J. E. The PEP—pyruvate—oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiology Reviews, Volume 29, Issue 4, 1 September 2005, Pages 765–794.</li> | ||
Line 326: | Line 326: | ||
<li class="smallp">Guillaume G. B., Tcherkez, Graham D. Farquhar, and T. John Andrews. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized Proc Natl Acad Sci U S A. 2006 May 9; 103(19): 7246–7251.</li> | <li class="smallp">Guillaume G. B., Tcherkez, Graham D. Farquhar, and T. John Andrews. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized Proc Natl Acad Sci U S A. 2006 May 9; 103(19): 7246–7251.</li> | ||
<li class="smallp">Yun L. and Keith A. M. Determination of Apparent Km Values for Ribulose 1,5- Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase Using the Spectrophotometric Assay of Rubisco Activity. Plant Physiol. (1991) 95, 604-609</li> | <li class="smallp">Yun L. and Keith A. M. Determination of Apparent Km Values for Ribulose 1,5- Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase Using the Spectrophotometric Assay of Rubisco Activity. Plant Physiol. (1991) 95, 604-609</li> | ||
− | <li class="smallp">Rong-guang Z, C. Evalena A., Alexei S., Tatiana S., Elena E., Steven B., Cheryl H. A., Aled M. E., Andrzej J., and Sherry L. M. Structure of Escherichia | + | <li class="smallp">Rong-guang Z, C. Evalena A., Alexei S., Tatiana S., Elena E., Steven B., Cheryl H. A., Aled M. E., Andrzej J., and Sherry L. M. Structure of <i>Escherichia Coli</i> Ribose-5-Phosphate Isomerase: A Ubiquitous Enzyme of the Pentose Phosphate Pathway and the Calvin Cycle Structure, Vol. 11, 31–42, January, 200</li> |
<li class="smallp">Inês L., Joana F., Christine C., Sandra M., Nuno S., Nilanjan R., Anabela C., and Joana T. Ribose 5-Phosphate Isomerase B Knockdown Compromises Trypanosoma brucei Bloodstream Form Infectivity PLoS Negl Trop Dis. 2015 Jan; 9(1): e3430.</li> | <li class="smallp">Inês L., Joana F., Christine C., Sandra M., Nuno S., Nilanjan R., Anabela C., and Joana T. Ribose 5-Phosphate Isomerase B Knockdown Compromises Trypanosoma brucei Bloodstream Form Infectivity PLoS Negl Trop Dis. 2015 Jan; 9(1): e3430.</li> | ||
<li class="smallp">Singh2006 TCA mtu model1. SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li> | <li class="smallp">Singh2006 TCA mtu model1. SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li> | ||
Line 335: | Line 335: | ||
<li class="smallp">Model name: “Mosca2012 - Central Carbon Metabolism Regulated by AKT”, SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li> | <li class="smallp">Model name: “Mosca2012 - Central Carbon Metabolism Regulated by AKT”, SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li> | ||
<li class="smallp">Ettore M., Roberta A., Carlo M., Annamaria B., Gianfranco C. and Luciano M., Computational modeling of the metabolic states regulated by the kinase Akt, Front. Physiol., 21 November 2012</li> | <li class="smallp">Ettore M., Roberta A., Carlo M., Annamaria B., Gianfranco C. and Luciano M., Computational modeling of the metabolic states regulated by the kinase Akt, Front. Physiol., 21 November 2012</li> | ||
− | <li class="smallp">Jacqueline E. G., Christopher P. L., Maciek R. A., Comprehensive analysis of glucose and xylose metabolism in Escherichia | + | <li class="smallp">Jacqueline E. G., Christopher P. L., Maciek R. A., Comprehensive analysis of glucose and xylose metabolism in <i>Escherichia Coli</i> under aerobic and anaerobic conditions by 13C metabolic flux analysis, Metabolic Engineering Volume 39, January 2017, Pages 9-18</li> |
<li class="smallp">N. Nuray Ulusu, Cihangir Şengezer, Kinetic mechanism and some properties of glucose-6- phosphate dehydrogenase from sheep brain cortex, Türk Biyokimya Dergisi [Turkish Journal of Biochemistry–Turk J Biochem] 2012; 37 (4) ; 340–347</li> | <li class="smallp">N. Nuray Ulusu, Cihangir Şengezer, Kinetic mechanism and some properties of glucose-6- phosphate dehydrogenase from sheep brain cortex, Türk Biyokimya Dergisi [Turkish Journal of Biochemistry–Turk J Biochem] 2012; 37 (4) ; 340–347</li> | ||
<li class="smallp">Stefania H., Katy M., Carlo C., Morena M., and Franco D., 6-Phosphogluconate Dehydrogenase Mechanism EVIDENCE FOR ALLOSTERIC MODULATION BY SUBSTRATE, J Biol Chem. 2010 Jul 9; 285(28): 21366–21371.</li> | <li class="smallp">Stefania H., Katy M., Carlo C., Morena M., and Franco D., 6-Phosphogluconate Dehydrogenase Mechanism EVIDENCE FOR ALLOSTERIC MODULATION BY SUBSTRATE, J Biol Chem. 2010 Jul 9; 285(28): 21366–21371.</li> |
Revision as of 14:38, 12 October 2018