Difference between revisions of "Team:UI Indonesia/Model"

Line 273: Line 273:
 
         </li>
 
         </li>
 
         <li class="navbar-parts"><a href="https://2018.igem.org/Team:UI_Indonesia/Parts">Parts</a></li>
 
         <li class="navbar-parts"><a href="https://2018.igem.org/Team:UI_Indonesia/Parts">Parts</a></li>
<li class="navbar-safety"><a href="https://2018.igem.org/Team:UI_Indonesia/Safety">Safety</a></li>
+
    <li class="navbar-safety"><a href="https://2018.igem.org/Team:UI_Indonesia/Safety">Safety</a></li>
<li class="dropdown navbar-interlab">
+
    <li class="dropdown navbar-interlab">
 
           <a href="https://2018.igem.org/Team:UI_Indonesia/InterLab">InterLab<span class="caret"></span></a>
 
           <a href="https://2018.igem.org/Team:UI_Indonesia/InterLab">InterLab<span class="caret"></span></a>
 
           <ul class="dropdown-menu">
 
           <ul class="dropdown-menu">
Line 280: Line 280:
 
             <li><a href="https://2018.igem.org/Team:UI_Indonesia/InterLab#materials">Materials and Equipment</a></li>
 
             <li><a href="https://2018.igem.org/Team:UI_Indonesia/InterLab#materials">Materials and Equipment</a></li>
 
             <li><a href="https://2018.igem.org/Team:UI_Indonesia/InterLab#methods">Methods</a></li>
 
             <li><a href="https://2018.igem.org/Team:UI_Indonesia/InterLab#methods">Methods</a></li>
<li><a href="https://2018.igem.org/Team:UI_Indonesia/InterLab#results">Results and Discussions</a></li>
+
      <li><a href="https://2018.igem.org/Team:UI_Indonesia/InterLab#results">Results and Discussions</a></li>
<li><a href="https://2018.igem.org/Team:UI_Indonesia/InterLab#conclusions">Conclusions</a></li>
+
      <li><a href="https://2018.igem.org/Team:UI_Indonesia/InterLab#conclusions">Conclusions</a></li>
 
           </ul>
 
           </ul>
 
         </li>
 
         </li>
<li class="navbar-model current"><a href="https://2018.igem.org/Team:UI_Indonesia/Model">Model</a></li>
+
    <li class="navbar-model current"><a href="https://2018.igem.org/Team:UI_Indonesia/Model">Model</a></li>
<li class="dropdown navbar-humanpractice">
+
    <li class="dropdown navbar-humanpractice">
 
           <a href="https://2018.igem.org/Team:UI_Indonesia/HumanPractices">Human Practices<span class="caret"></span></a>
 
           <a href="https://2018.igem.org/Team:UI_Indonesia/HumanPractices">Human Practices<span class="caret"></span></a>
 
           <ul class="dropdown-menu">
 
           <ul class="dropdown-menu">
Line 291: Line 291:
 
             <li><a href="https://2018.igem.org/Team:UI_Indonesia/HumanPractices#collapse2">Social Work</a></li>
 
             <li><a href="https://2018.igem.org/Team:UI_Indonesia/HumanPractices#collapse2">Social Work</a></li>
 
             <li><a href="https://2018.igem.org/Team:UI_Indonesia/HumanPractices#collapse3">Biosafety & Biosecurity Training</a></li>
 
             <li><a href="https://2018.igem.org/Team:UI_Indonesia/HumanPractices#collapse3">Biosafety & Biosecurity Training</a></li>
<li><a href="https://2018.igem.org/Team:UI_Indonesia/HumanPractices#collapse4">Human Practice Catalogue</a></li>
+
      <li><a href="https://2018.igem.org/Team:UI_Indonesia/HumanPractices#collapse4">Human Practice Catalogue</a></li>
 
           </ul>
 
           </ul>
 
         </li>
 
         </li>
<li class="navbar-improve"><a href="https://2018.igem.org/Team:UI_Indonesia/Improve">Improve</a></li>
+
    <li class="navbar-improve"><a href="https://2018.igem.org/Team:UI_Indonesia/Improve">Improve</a></li>
<li class="navbar-team"><a href="https://2018.igem.org/Team:UI_Indonesia/Team">Team</a></li>
+
    <li class="navbar-team"><a href="https://2018.igem.org/Team:UI_Indonesia/Team">Team</a></li>
<li class="navbar-collaborations"><a href="https://2018.igem.org/Team:UI_Indonesia/Collaborations">Collaborations</a></li>
+
    <li class="navbar-collaborations"><a href="https://2018.igem.org/Team:UI_Indonesia/Collaborations">Collaborations</a></li>
<li class="navbar-attributions"><a href="https://2018.igem.org/Team:UI_Indonesia/Attributions">Attributions</a></li>
+
    <li class="navbar-attributions"><a href="https://2018.igem.org/Team:UI_Indonesia/Attributions">Attributions</a></li>
 
       </ul>
 
       </ul>
 
     </div>
 
     </div>
Line 311: Line 311:
 
</div>
 
</div>
 
<br><br>
 
<br><br>
<h1 align="center"> Structural Modelling </h1>
 
  
 +
<h1 align="center"> Structural Modelling </h1>
 
<h3 align="center"> Chimera Combination </h3>
 
<h3 align="center"> Chimera Combination </h3>
  
Line 339: Line 339:
 
   <h6><b>Table 1.</b> Specific Gibbs Energy within Each Protein Combination.</h6>
 
   <h6><b>Table 1.</b> Specific Gibbs Energy within Each Protein Combination.</h6>
 
   <table >
 
   <table >
<tr>
+
  <tr>
<th width="120px">Combination</th>
+
    <th width="120px">Combination</th>
<th width="120px"><p align="center">∆G</p></th>
+
    <th width="120px"><p align="center">∆G</p></th>
</tr><tr>
+
  </tr><tr>
<td><b>LuxB-CheY</b></td>
+
    <td><b>LuxB-CheY</b></td>
<td><p align="right">58.15 kcal/mol</p></td>
+
    <td><p align="right">58.15 kcal/mol</p></td>
</tr><tr>
+
  </tr><tr>
<td><b>LuxB-CheA</b></td>
+
    <td><b>LuxB-CheA</b></td>
<td><p align="right">1355.46 kcal/mol</p></td>
+
    <td><p align="right">1355.46 kcal/mol</p></td>
</tr><tr>
+
  </tr><tr>
<td><b>CheY-eYFP</b></td>
+
    <td><b>CheY-eYFP</b></td>
<td><p align="right">36.48 kcal/mol</p></td>
+
    <td><p align="right">36.48 kcal/mol</p></td>
</tr><tr>
+
  </tr><tr>
<td><b>CheA-eYFP</b></td>
+
    <td><b>CheA-eYFP</b></td>
<td><p align="right">36.48 kcal/mol</p></td>
+
    <td><p align="right">36.48 kcal/mol</p></td>
</tr>
+
  </tr>
 
   </table>
 
   </table>
 
   </div>
 
   </div>
Line 370: Line 370:
 
   domain or the coiled secondary structure of protein to minimize any  
 
   domain or the coiled secondary structure of protein to minimize any  
 
   interruptions. Here is our affitoxin data from <i>NetSurfP</i> server.Result from the <i>NetSurf server</i>, we choose C-terminus side,  
 
   interruptions. Here is our affitoxin data from <i>NetSurfP</i> server.Result from the <i>NetSurf server</i>, we choose C-terminus side,  
because it most likely turns/coils around (indicated by  
+
  because it most likely turns/coils around (indicated by  
has high number on the most right column is closest to 1),  
+
  has high number on the most right column is closest to 1),  
and it is freely exposed (indicated by most left column has E alphabet)</h5>
+
  and it is freely exposed (indicated by most left column has E alphabet)</h5>
 
    
 
    
 
   <br><br>
 
   <br><br>
Line 379: Line 379:
 
   <h6><b>Table 2.</b> Coiling probability of Affitoxin’s specific domain.</h6>
 
   <h6><b>Table 2.</b> Coiling probability of Affitoxin’s specific domain.</h6>
 
   <table >
 
   <table >
<tr>
+
  <tr>
<th>Class assignment</th>
+
    <th>Class assignment</th>
<th>Amino acid</th>
+
    <th>Amino acid</th>
<th><p align="right">Amino acid<br>number</p></th>
+
    <th><p align="right">Amino acid<br>number</p></th>
<th><p align="right">Probability<br>for Coil</p></th>
+
    <th><p align="right">Probability<br>for Coil</p></th>
</tr><tr>
+
  </tr><tr>
<td><b>B</b></td>
+
    <td><b>B</b></td>
<td>I</td>
+
    <td>I</td>
<td><p align="right">54</p></td>
+
    <td><p align="right">54</p></td>
<td><p align="right">0.223</p></td>
+
    <td><p align="right">0.223</p></td>
</tr><tr>
+
  </tr><tr>
<td><b>E</b></td>
+
    <td><b>E</b></td>
<td>K</td>
+
    <td>K</td>
<td><p align="right">55</p></td>
+
    <td><p align="right">55</p></td>
<td><p align="right">0.669</p></td>
+
    <td><p align="right">0.669</p></td>
</tr><tr>
+
  </tr><tr>
<td><b>E</b></td>
+
    <td><b>E</b></td>
<td>S</td>
+
    <td>S</td>
<td><p align="right">56</p></td>
+
    <td><p align="right">56</p></td>
<td><p align="right">0.994</p></td>
+
    <td><p align="right">0.994</p></td>
</tr>
+
  </tr>
</table>
+
  </table>
 
   </div>
 
   </div>
 
    
 
    
 
 
 
 
   <br><br>
 
   <br><br>
<h5>Performing structural similarity between original molecule and  
+
  <h5>Performing structural similarity between original molecule and  
the one inserted with <i>His-tag</i> sequence have been done by <i>MUSTANG</i>  
+
  the one inserted with <i>His-tag</i> sequence have been done by <i>MUSTANG</i>  
server that built in via <i>YASARA molecule viewer.<sup>5<sup></i> The output would be  
+
  server that built in via <i>YASARA molecule viewer.<sup>5<sup></i> The output would be  
distance calculation between interacting atoms called RMSD  
+
  distance calculation between interacting atoms called RMSD  
(Root-mean-square deviation). Following tables are summaries of the  
+
  (Root-mean-square deviation). Following tables are summaries of the  
molecular similarity analysis. From the data that described above, all the combinations are acceptable,
+
  molecular similarity analysis. From the data that described above, all the combinations are acceptable,
except LuxA, since its possible combination has high RMSD. The threshold  
+
  except LuxA, since its possible combination has high RMSD. The threshold  
is relative, but several literatures define the RMSD value of 2 as  
+
  is relative, but several literatures define the RMSD value of 2 as  
threshold for structure similarity.<sup>5,6,7</sup></h5>
+
  threshold for structure similarity.<sup>5,6,7</sup></h5>
  
 
   <br><br>
 
   <br><br>
Line 421: Line 419:
 
   <h6><b>Table 1.</b> RMSD Calculation within Several Protein Linked with His-tag.</h6>
 
   <h6><b>Table 1.</b> RMSD Calculation within Several Protein Linked with His-tag.</h6>
 
   <table ><!-------TABLE 3-------TABLE 3-------TABLE 3------->
 
   <table ><!-------TABLE 3-------TABLE 3-------TABLE 3------->
<tr>
+
  <tr>
<th width="300px"><p align="center">Similarities between</th>
+
    <th width="300px"><p align="center">Similarities between</th>
<th width="120px"><p align="center">RMSD</p></th>
+
    <th width="120px"><p align="center">RMSD</p></th>
</tr><tr>
+
  </tr><tr>
<td><b>LuxA with LuxA + His</b></td>
+
    <td><b>LuxA with LuxA + His</b></td>
<td>2.203 Å</td>
+
    <td>2.203 Å</td>
</tr><tr>
+
  </tr><tr>
<td><b>LuxC with LuxC + His</b></td>
+
    <td><b>LuxC with LuxC + His</b></td>
<td>0.985 Å</td>
+
    <td>0.985 Å</td>
</tr><tr>
+
  </tr><tr>
<td><b>LuxD with LuxD + His</b></td>
+
    <td><b>LuxD with LuxD + His</b></td>
<td>0.1777 Å</td>
+
    <td>0.1777 Å</td>
</tr><tr>
+
  </tr><tr>
<td><b>LuxE with LuxE + His</b></td>
+
    <td><b>LuxE with LuxE + His</b></td>
<td>0.800 </td>
+
    <td>0.800 </td>
</tr><tr>
+
  </tr><tr>
<td><b>CheY-eYFP with CheY-eYFP+his</b></td>
+
    <td><b>CheY-eYFP with CheY-eYFP+his</b></td>
<td>0.108 Å</td>
+
    <td>0.108 Å</td>
</tr><tr>
+
  </tr><tr>
<td><b>eYFP with eYFP + His</b></td>
+
    <td><b>eYFP with eYFP + His</b></td>
<td>0.315 Å</td>
+
    <td>0.315 Å</td>
</tr><tr>
+
  </tr><tr>
<td><b>CheA with CheA + His</b></td>
+
    <td><b>CheA with CheA + His</b></td>
<td>0.134 Å</td>
+
    <td>0.134 Å</td>
</tr>
+
  </tr>
 
   </table>
 
   </table>
 
   </div>
 
   </div>
  
 
 
   <br><br>
 
   <br><br>
<h5>In HB-EGF, the part that serves as binding domain for diphtheria exotoxin  
+
  <h5>In HB-EGF, the part that serves as binding domain for diphtheria exotoxin  
predominantly located in the extracellular environment. Therefore,  
+
  predominantly located in the extracellular environment. Therefore,  
the domain, expands between 20<sup>th</sup> – 160<sup>th</sup> amino acid, was selected from  
+
  the domain, expands between 20<sup>th</sup> – 160<sup>th</sup> amino acid, was selected from  
natural HB-EGF protein. On the other hand, the Tar domain that are  
+
  natural HB-EGF protein. On the other hand, the Tar domain that are  
functions to establish intracellular chemotactic signalling includes  
+
  functions to establish intracellular chemotactic signalling includes  
NdeI cutting-site (around 257<sup>th</sup> amino acid) until the utmost C-terminal  
+
  NdeI cutting-site (around 257<sup>th</sup> amino acid) until the utmost C-terminal  
of the protein (the 553<sup>rd</sup> amino acid).8-11 By those factors, our team also  
+
  of the protein (the 553<sup>rd</sup> amino acid).8-11 By those factors, our team also  
selected Tar domains involving the 1st – 33<sup>rd</sup> and 191<sup>st</sup> –  
+
  selected Tar domains involving the 1st – 33<sup>rd</sup> and 191<sup>st</sup> –  
553<sup>rd</sup> amino acid as part of chimeric protein.</h5>
+
  553<sup>rd</sup> amino acid as part of chimeric protein.</h5>
 
    
 
    
 
   <br><br>
 
   <br><br>
Line 468: Line 465:
 
   <br><br>
 
   <br><br>
 
    
 
    
<h6><b>Figure 1.</b> The selected segment of Tar protein. The functional  
+
  <h6><b>Figure 1.</b> The selected segment of Tar protein. The functional  
intracellular domain of Tar is shown as yellow box, blue box is  
+
  intracellular domain of Tar is shown as yellow box, blue box is  
transmembrane domain and orange box is periplasmic domain. Selected Tar  
+
  transmembrane domain and orange box is periplasmic domain. Selected Tar  
domain expands from 1st -33<sup>rd</sup> amino acids and 191<sup>st</sup> -553<sup>rd</sup> amino acids.  
+
  domain expands from 1st -33<sup>rd</sup> amino acids and 191<sup>st</sup> -553<sup>rd</sup> amino acids.  
Modification of binding domain is located between 33<sup>rd</sup> – 191<sup>st</sup> amino acids</h6>
+
  Modification of binding domain is located between 33<sup>rd</sup> – 191<sup>st</sup> amino acids</h6>
  
 
   <br><br>
 
   <br><br>
 
    
 
    
<h5>Our team have predicted the HB-EGF/Tar protein orientation in the  
+
  <h5>Our team have predicted the HB-EGF/Tar protein orientation in the  
<i>Escherichia coli</i> membrane. For this purpose, server <i>TMHMM</i> and <i>OPM Membrane</i>,  
+
  <i>Escherichia coli</i> membrane. For this purpose, server <i>TMHMM</i> and <i>OPM Membrane</i>,  
are utilized to predict protein orientation.<sup>12,13</sup> Conceptual hypothesis  
+
  are utilized to predict protein orientation.<sup>12,13</sup> Conceptual hypothesis  
about the chimera protein is that it should begin its orientation of  
+
  about the chimera protein is that it should begin its orientation of  
C-terminus in cytoplasm, then continued to fold into transmembrane and  
+
  C-terminus in cytoplasm, then continued to fold into transmembrane and  
extracellular sites, as well as re-folding towards cytoplasm.<h5>
+
  extracellular sites, as well as re-folding towards cytoplasm.<h5>
 
    
 
    
 
   <!-------PAGE 3----------PAGE 3----------PAGE 3----------PAGE 3------->
 
   <!-------PAGE 3----------PAGE 3----------PAGE 3----------PAGE 3------->
Line 487: Line 484:
 
   <br><br>
 
   <br><br>
 
   <img src = "https://static.igem.org/mediawiki/2018/e/e8/T--UI_Indonesia--fig2.jpg"></img>
 
   <img src = "https://static.igem.org/mediawiki/2018/e/e8/T--UI_Indonesia--fig2.jpg"></img>
<h6><b>Figure 2.</b> The graph above explains the result of HB-EGF/Tar  
+
  <h6><b>Figure 2.</b> The graph above explains the result of HB-EGF/Tar  
orientation, which began from C-terminus (left) to N-terminus (right).<sup>12</sup>  
+
  orientation, which began from C-terminus (left) to N-terminus (right).<sup>12</sup>  
Y-axis pictured the possibility of n<sup>th</sup> amino acid on protein located somewhere  
+
  Y-axis pictured the possibility of n<sup>th</sup> amino acid on protein located somewhere  
between transmembrane (red part), intracellular (blue line), and  
+
  between transmembrane (red part), intracellular (blue line), and  
extracellular (pink line). There is also a diagram located above the graph  
+
  extracellular (pink line). There is also a diagram located above the graph  
that represent the most possible location of each domain (with elongated box).</h6>
+
  that represent the most possible location of each domain (with elongated box).</h6>
 
    
 
    
 
   <br>
 
   <br>
 
    
 
    
<h5>From the results, it could be concluded that the protein was oriented  
+
  <h5>From the results, it could be concluded that the protein was oriented  
as expected in the hypothesis. Therefore, the usage of chimera protein is  
+
  as expected in the hypothesis. Therefore, the usage of chimera protein is  
predicted to be functional anatomically. </h5>
+
  predicted to be functional anatomically. </h5>
 
    
 
    
 
   <br>
 
   <br>
Line 510: Line 507:
 
   <br>
 
   <br>
 
    
 
    
<h6><b>Figure 3.</b>Molecular comparation of HB-EGF native protein (left)  
+
  <h6><b>Figure 3.</b>Molecular comparation of HB-EGF native protein (left)  
with the HB-EGF/Tar fusion (right).<sup>13,14</sup> The pink-coloured  
+
  with the HB-EGF/Tar fusion (right).<sup>13,14</sup> The pink-coloured  
domain is intracellularly located as the N-terminus, yellow-coloured  
+
  domain is intracellularly located as the N-terminus, yellow-coloured  
domain for the transmembrane one. Then, purple-coloured could be a sign  
+
  domain for the transmembrane one. Then, purple-coloured could be a sign  
as the extracellular domain, finally folding into transmembrane and back  
+
  as the extracellular domain, finally folding into transmembrane and back  
to cytoplasm with orange-coloured and cyan-coloured domain respectively.</h6>
+
  to cytoplasm with orange-coloured and cyan-coloured domain respectively.</h6>
 
    
 
    
 
   <!-------PAGE 4----------PAGE 4----------PAGE 4----------PAGE 4------->
 
   <!-------PAGE 4----------PAGE 4----------PAGE 4----------PAGE 4------->
Line 521: Line 518:
 
   <br>
 
   <br>
 
    
 
    
<h5>After deciding sequence combination of amino acids in modelled chimera  
+
  <h5>After deciding sequence combination of amino acids in modelled chimera  
HB-EGF/Tar protein, analyzing the interaction of both fusion protein and  
+
  HB-EGF/Tar protein, analyzing the interaction of both fusion protein and  
diphtheria exotoxin is extremely important to ensure functional  
+
  diphtheria exotoxin is extremely important to ensure functional  
ligand-receptor system. The basic concept of interaction modelling is  
+
  ligand-receptor system. The basic concept of interaction modelling is  
that the protein will be bound to each other well if it causes the  
+
  that the protein will be bound to each other well if it causes the  
‘environment’ energy (termed by E parameter; calculated by formula below)
+
  ‘environment’ energy (termed by E parameter; calculated by formula below)
being lowered down. In this part, our team sent the respective sequence to  
+
  being lowered down. In this part, our team sent the respective sequence to  
ClusPro website for further analyzing.<sup>15</sup></h5>
+
  ClusPro website for further analyzing.<sup>15</sup></h5>
  
 
   <br>
 
   <br>
 
    
 
    
 
   <div><h4 align="center">
 
   <div><h4 align="center">
E = 0.4E<sub>rep</sub> + -0.40E<sub>att</sub> + 600E<sub>elec</sub> + 1.00E<sub>DARS</sub>
+
  E = 0.4E<sub>rep</sub> + -0.40E<sub>att</sub> + 600E<sub>elec</sub> + 1.00E<sub>DARS</sub>
 
   </h4></div>
 
   </h4></div>
  
<h6>Note: E<sub>rep</sub> and E<sub>attr</sub> denote as repulsive and attractive contributions  
+
  <h6>Note: E<sub>rep</sub> and E<sub>attr</sub> denote as repulsive and attractive contributions  
to the <i>van der Waals</i> interaction energy. Additionally, E<sub>elec</sub> means an  
+
  to the <i>van der Waals</i> interaction energy. Additionally, E<sub>elec</sub> means an  
electrostatic energy that occur during both protein interaction. E<sub>DARS</sub>  
+
  electrostatic energy that occur during both protein interaction. E<sub>DARS</sub>  
is a pairwise structure-based potential constructed by the Decoys of  
+
  is a pairwise structure-based potential constructed by the Decoys of  
the Reference State (DARS) approach, and it primarily represents  
+
  the Reference State (DARS) approach, and it primarily represents  
desolvation contributions, i.e., the free energy change due to the  
+
  desolvation contributions, i.e., the free energy change due to the  
removal of the water molecules from the interface.<sup>15</sup><h6>
+
  removal of the water molecules from the interface.<sup>15</sup><h6>
 
    
 
    
 
   <br>
 
   <br>
Line 549: Line 546:
 
   <h6><b>Table 4.</b> Comparation of E parameter of native and chimera protein of HB-EGF interacted with affitoxin.</h6>
 
   <h6><b>Table 4.</b> Comparation of E parameter of native and chimera protein of HB-EGF interacted with affitoxin.</h6>
 
   <table ><!-------TABLE 4-------TABLE 4-------TABLE 4------->
 
   <table ><!-------TABLE 4-------TABLE 4-------TABLE 4------->
<tr>
+
  <tr>
<th><p align="center">HB-EGF<br>Protein</th>
+
    <th><p align="center">HB-EGF<br>Protein</th>
<th><p align="center">Median Energy (kcal/mol)</p></th>
+
    <th><p align="center">Median Energy (kcal/mol)</p></th>
<th><p align="center">Lowest Energy (kcal/mol)</p></th>
+
    <th><p align="center">Lowest Energy (kcal/mol)</p></th>
</tr><tr>
+
  </tr><tr>
<td><b>Native</b></td>
+
    <td><b>Native</b></td>
<td><p align="center">-944.3</p></td>
+
    <td><p align="center">-944.3</p></td>
<td><p align="center">-994.3</p></td>
+
    <td><p align="center">-994.3</p></td>
</tr><tr>
+
  </tr><tr>
<td><b>Chimera</b></td>
+
    <td><b>Chimera</b></td>
<td><p align="center">858.2</p></td>
+
    <td><p align="center">858.2</p></td>
<td><p align="center">934.4</p></td>
+
    <td><p align="center">934.4</p></td>
</tr>
+
  </tr>
 
   </table>
 
   </table>
 
   </div>
 
   </div>
Line 571: Line 568:
 
<!----Figure 4 Image----->
 
<!----Figure 4 Image----->
 
    
 
    
<h6><b>Figure 5.</b>HB-EGF natural receptor and Affitoxin 3D interaction modelling result.</h6>
+
  <h6><b>Figure 5.</b>HB-EGF natural receptor and Affitoxin 3D interaction modelling result.</h6>
 
    
 
    
 
   <br>
 
   <br>
 
    
 
    
<h5>The result of interaction modelling is quantified as energy score based on  
+
  <h5>The result of interaction modelling is quantified as energy score based on  
the formula above. Referring to figure 4 and 5, we might expect that the  
+
  the formula above. Referring to figure 4 and 5, we might expect that the  
affitoxin (cyan) would bind to both native and chimeric HB-EGF receptor that  
+
  affitoxin (cyan) would bind to both native and chimeric HB-EGF receptor that  
are both located in the extracellular (green). It is indicated by higher  
+
  are both located in the extracellular (green). It is indicated by higher  
energy score of interaction between chimeric HB-EGF/Tar receptor-Affitoxin  
+
  energy score of interaction between chimeric HB-EGF/Tar receptor-Affitoxin  
than that of to HB-EGF natural receptor-Affitoxin (Table 4). This means  
+
  than that of to HB-EGF natural receptor-Affitoxin (Table 4). This means  
that the chimeric receptor could bind towards affitoxin as good  
+
  that the chimeric receptor could bind towards affitoxin as good  
(or even better) than the original one. </h5>
+
  (or even better) than the original one. </h5>
 
    
 
    
 
   <br><br>
 
   <br><br>
 
    
 
    
<h5>Beside the cell’s ability to detect toxin, our team also need to ensure  
+
  <h5>Beside the cell’s ability to detect toxin, our team also need to ensure  
the signaling machine works well. Our team also modelled the interaction  
+
  the signaling machine works well. Our team also modelled the interaction  
between LuxA dan LuxB (that we fused with CheA). From figure 6 and 7,  
+
  between LuxA dan LuxB (that we fused with CheA). From figure 6 and 7,  
we might expect that both proteins are still able to interact normally  
+
  we might expect that both proteins are still able to interact normally  
after combining them with FRET unit (CheA or CheY protein). </h5>
+
  after combining them with FRET unit (CheA or CheY protein). </h5>
  
 
   <!-------PAGE 5----------PAGE 5----------PAGE 5----------PAGE 5------->
 
   <!-------PAGE 5----------PAGE 5----------PAGE 5----------PAGE 5------->
Line 599: Line 596:
 
   <h6><b>Table 5.</b> Comparation of E parameter of native and His-tagged protein of LuxB-CheA.</h6>
 
   <h6><b>Table 5.</b> Comparation of E parameter of native and His-tagged protein of LuxB-CheA.</h6>
 
   <table ><!-------TABLE 5-------TABLE 5-------TABLE 5------->
 
   <table ><!-------TABLE 5-------TABLE 5-------TABLE 5------->
<tr>
+
  <tr>
<th><p align="center">LuxAB</th>
+
    <th><p align="center">LuxAB</th>
<th><p align="center">Median Energy (kcal/mol)</p></th>
+
    <th><p align="center">Median Energy (kcal/mol)</p></th>
<th><p align="center">Lowest Energy (kcal/mol)</p></th>
+
    <th><p align="center">Lowest Energy (kcal/mol)</p></th>
</tr><tr>
+
  </tr><tr>
<td><b>Native</b></td>
+
    <td><b>Native</b></td>
<td><p align="center">-1515.4.3</p></td>
+
    <td><p align="center">-1515.4.3</p></td>
<td><p align="center">-1553.2</p></td>
+
    <td><p align="center">-1553.2</p></td>
</tr><tr>
+
  </tr><tr>
<td><b>Chimera</b></td>
+
    <td><b>Chimera</b></td>
<td><p align="center">-1220.9</p></td>
+
    <td><p align="center">-1220.9</p></td>
<td><p align="center">-1290.7</p></td>
+
    <td><p align="center">-1290.7</p></td>
</tr>
+
  </tr>
 
   </table>
 
   </table>
 
   </div>
 
   </div>
Line 619: Line 616:
 
   <img></img><!----Figure 6 Image----->
 
   <img></img><!----Figure 6 Image----->
 
    
 
    
<h6><b>Figure 6.</b>LuxA and LuxB-CheA (LuxAB-CheA) 3D interaction modelling result.</h6>
+
  <h6><b>Figure 6.</b>LuxA and LuxB-CheA (LuxAB-CheA) 3D interaction modelling result.</h6>
 
    
 
    
 
   <img></img><!----Figure 7 Image----->
 
   <img></img><!----Figure 7 Image----->
 
    
 
    
<h6><b>Figure 7.</b>.LuxA and LuxB 3D interaction modelling result.</h6>
+
  <h6><b>Figure 7.</b>.LuxA and LuxB 3D interaction modelling result.</h6>
 
    
 
    
 
   <!-------PAGE 6----------PAGE 6----------PAGE 6----------PAGE 6------->
 
   <!-------PAGE 6----------PAGE 6----------PAGE 6----------PAGE 6------->
 
    
 
    
 
   <br>
 
   <br>
+
 
 
   <div>
 
   <div>
Reference :
+
  Reference :
<ol align="justify">
+
  <ol align="justify">
<li>J Yang, R Yan, A Roy, D Xu, J Poisson, Y Zhang. The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12: 7-8 (2015)</li>
+
    <li>J Yang, R Yan, A Roy, D Xu, J Poisson, Y Zhang. The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12: 7-8 (2015)</li>
<li>A Roy, A Kucukural, Y Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5: 725-738 (2010)</li>
+
    <li>A Roy, A Kucukural, Y Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5: 725-738 (2010)</li>
<li>Y Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, vol 9, 40 (2008)</li>
+
    <li>Y Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, vol 9, 40 (2008)</li>
<li>Sun, S., Yang, X., Wang, Y., Shen, X., 2016. In Vivo Analysis of Protein–Protein Interactions with Bioluminescence Resonance Energy Transfer (BRET): Progress and Prospects. International Journal of Molecular Sciences 17, 1704. https://doi.org/10.3390/ijms17101704</li>
+
    <li>Sun, S., Yang, X., Wang, Y., Shen, X., 2016. In Vivo Analysis of Protein–Protein Interactions with Bioluminescence Resonance Energy Transfer (BRET): Progress and Prospects. International Journal of Molecular Sciences 17, 1704. https://doi.org/10.3390/ijms17101704</li>
<li>MUSTANG: A multiple structural alignment algorithm Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) Proteins 64,559-574</li>
+
    <li>MUSTANG: A multiple structural alignment algorithm Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) Proteins 64,559-574</li>
<li>Bordogna, A., Pandini, A., Bonati, L., 2010. Predicting the accuracy of protein-ligand docking on homology models. Journal of Computational Chemistry 32, 81–98. https://doi.org/10.1002/jcc.21601</li>
+
    <li>Bordogna, A., Pandini, A., Bonati, L., 2010. Predicting the accuracy of protein-ligand docking on homology models. Journal of Computational Chemistry 32, 81–98. https://doi.org/10.1002/jcc.21601</li>
<li>Carugo, O., 2003. How root-mean-square distance (r.m.s.d.) values depend on the resolution of protein structures that are compared. Journal of Applied Crystallography 36, 125–128. https://doi.org/10.1107/s0021889802020502</li>
+
    <li>Carugo, O., 2003. How root-mean-square distance (r.m.s.d.) values depend on the resolution of protein structures that are compared. Journal of Applied Crystallography 36, 125–128. https://doi.org/10.1107/s0021889802020502</li>
<li>Kanchan, K., Linder, J., Winkler, K., Hantke, K., Schultz, A. and Schultz, J. (2009). Transmembrane Signaling in Chimeras of the Escherichia coli Aspartate and Serine Chemotaxis Receptors and Bacterial Class III Adenylyl Cyclases. <i>Journal of Biological Chemistry</i>, 285(3), pp.2090-2099.</li>
+
    <li>Kanchan, K., Linder, J., Winkler, K., Hantke, K., Schultz, A. and Schultz, J. (2009). Transmembrane Signaling in Chimeras of the Escherichia coli Aspartate and Serine Chemotaxis Receptors and Bacterial Class III Adenylyl Cyclases. <i>Journal of Biological Chemistry</i>, 285(3), pp.2090-2099.</li>
<li>Ward, S., Delgado, A., Gunsalus, R. and Manson, M. (2002). A NarX-Tar chimera mediates repellent chemotaxis to nitrate and nitrite. <i>Molecular Microbiology</i>, 44(3), pp.709-719.</li>
+
    <li>Ward, S., Delgado, A., Gunsalus, R. and Manson, M. (2002). A NarX-Tar chimera mediates repellent chemotaxis to nitrate and nitrite. <i>Molecular Microbiology</i>, 44(3), pp.709-719.</li>
<li><b>Melchers, L. S., Regensburg-Tuïnk, T. J., Bourret, R. B., Sedee, N. J., Schilperoort, R. A. and Hooykaas, P. J. (1989). Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. The <i>EMBO Journal</i>, 8(7), pp.1919-1925.</li></b>
+
    <li><b>Melchers, L. S., Regensburg-Tuïnk, T. J., Bourret, R. B., Sedee, N. J., Schilperoort, R. A. and Hooykaas, P. J. (1989). Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. The <i>EMBO Journal</i>, 8(7), pp.1919-1925.</li></b>
<li><b>Weerasuriya, S., Schneider, B. M. and Manson, M. D. (1998). Chimeric Chemoreceptors in <i>Escherichia coli</i>: Signaling Properties of Tar-Tap and Tap-Tar Hybrids. <i>Journal of Bacteriology</i>, 180(4), pp.914-920.</li></b>
+
    <li><b>Weerasuriya, S., Schneider, B. M. and Manson, M. D. (1998). Chimeric Chemoreceptors in <i>Escherichia coli</i>: Signaling Properties of Tar-Tap and Tap-Tar Hybrids. <i>Journal of Bacteriology</i>, 180(4), pp.914-920.</li></b>
<li>Cbs.dtu.dk. (2018). <i>TMHMM Server</i>, v. 2.0. [online] Available at: http://www.cbs.dtu.dk/services/TMHMM/ [Accessed 22 Jul. 2018].</li>
+
    <li>Cbs.dtu.dk. (2018). <i>TMHMM Server</i>, v. 2.0. [online] Available at: http://www.cbs.dtu.dk/services/TMHMM/ [Accessed 22 Jul. 2018].</li>
<li>Lomize M.A., Pogozheva I,D, Joo H., Mosberg H.I., Lomize A.L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res., 2012, 40(Database issue):D370-6</li>
+
    <li>Lomize M.A., Pogozheva I,D, Joo H., Mosberg H.I., Lomize A.L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res., 2012, 40(Database issue):D370-6</li>
<li>Kelley LA et al. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. <i>Nature Protocols</i> 10, pp.845-858 </li>
+
    <li>Kelley LA et al. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. <i>Nature Protocols</i> 10, pp.845-858 </li>
<li>Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The ClusPro web server for protein-protein docking. <i>Nature Protocols</i>.2017 Feb;12(2):255-278 ; pdf </li>
+
    <li>Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The ClusPro web server for protein-protein docking. <i>Nature Protocols</i>.2017 Feb;12(2):255-278 ; pdf </li>
<li>Kozakov D, Beglov D, Bohnuud T, Mottarella S, Xia B, Hall DR, Vajda, S. How good is automated protein docking? <i>Proteins: Structure, Function, and Bioinformatics</i>, 2013 Aug ;  pdf </li>
+
    <li>Kozakov D, Beglov D, Bohnuud T, Mottarella S, Xia B, Hall DR, Vajda, S. How good is automated protein docking? <i>Proteins: Structure, Function, and Bioinformatics</i>, 2013 Aug ;  pdf </li>
<li>Kozakov D, Brenke R, Comeau SR, Vajda S. PIPER: An FFT-based protein docking program with pairwise potentials. <i>Proteins</i>. 2006 Aug 24;  pdf </li>
+
    <li>Kozakov D, Brenke R, Comeau SR, Vajda S. PIPER: An FFT-based protein docking program with pairwise potentials. <i>Proteins</i>. 2006 Aug 24;  pdf </li>
<li>Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: an automated docking and discrimination method for the prediction of protein complexes.<i>Bioinformatics</i>. 2004 Jan 1;  pdf </li>
+
    <li>Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: an automated docking and discrimination method for the prediction of protein complexes.<i>Bioinformatics</i>. 2004 Jan 1;  pdf </li>
<li>Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: a fully automated algorithm for protein-protein docking <i>Nucleic Acids Research</i>. 2004 Jul 1;  pdf </li>
+
    <li>Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: a fully automated algorithm for protein-protein docking <i>Nucleic Acids Research</i>. 2004 Jul 1;  pdf </li>
<li>Högbom, M., Eklund, M., Nygren, P. Å., & Nordlund, P. (2003). Structural basis for recognition by an in vitro evolved affibody. Proceedings of the National Academy of Sciences, 100(6), 3191-3196.</li>
+
    <li>Högbom, M., Eklund, M., Nygren, P. Å., & Nordlund, P. (2003). Structural basis for recognition by an in vitro evolved affibody. Proceedings of the National Academy of Sciences, 100(6), 3191-3196.</li>
<li>2015.igem.org. (2018). <i>Team:Stockholm/Description - 2015.igem.org</i>. [online] Available at: https://2015.igem.org/Team:Stockholm/Description [Accessed 22 Jul. 2018].</li>
+
    <li>2015.igem.org. (2018). <i>Team:Stockholm/Description - 2015.igem.org</i>. [online] Available at: https://2015.igem.org/Team:Stockholm/Description [Accessed 22 Jul. 2018].</li>
</ol></div>
+
  </ol></div>
  
 
   <br>
 
   <br>
 +
</div>
 
     <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
 
     <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
 
   <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
 
   <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>

Revision as of 16:36, 15 October 2018

MODELLING


Structural Modelling

Chimera Combination

Our first steps in modelling the subsequent parts of Finding Diphthy iGEM-UI 2018 in silico is by constructing all 3D models via I-Tasser server.1,2,3 The extension of the product file is .pdb, that could be read by the server. The chimera molecules which we need to predict their modelling are HB-EGF/TAR (Heparin Binding Epidermal Growth Factor- TAR chemotaxis), CheA signalling protein, Che-Y signalling protein, LuxAB dimerized luciferase subunits, and eYFP (enhanced yellow fluorescent protein), as well as DiphTox (modified diphtheria exotoxin). Since CheA and CheY are required to be linked with LuxB or eYFP, we have cited one of the universal linker, that is ‘GGGSGGGGSGGGGSG’ peptides, according to Sun S et al.



In choosing the best combination, we use FoldX option via YASARA molecules viewer to calculate the ∆G of each molecule, searching for the smallest free energy (regarding its stability in vivo). All those sequences are also submitted to I-Tasser server for projecting their 3D models qualitatively. The following results would conclude that our cytoplasmic signalling combinations are CheY-eYFP and LuxB-CheA.


Table 1. Specific Gibbs Energy within Each Protein Combination.
Combination

∆G

LuxB-CheY

58.15 kcal/mol

LuxB-CheA

1355.46 kcal/mol

CheY-eYFP

36.48 kcal/mol

CheA-eYFP

36.48 kcal/mol



Characterisation or purification of those proteins would promote the usage of His-tag; therefore, insertion of His-tag inside the sequence is essential. To ensure the slightest change of tertiary structures of each protein, we would need to find out the secondary structure and surface accesibility via NetSurfP ver. 1.1 analyser (http://www.cbs.dtu.dk/services/NetSurfP/). We would insert His-tag sequence in either no available specific protein domain or the coiled secondary structure of protein to minimize any interruptions. Here is our affitoxin data from NetSurfP server.Result from the NetSurf server, we choose C-terminus side, because it most likely turns/coils around (indicated by has high number on the most right column is closest to 1), and it is freely exposed (indicated by most left column has E alphabet)


Table 2. Coiling probability of Affitoxin’s specific domain.
Class assignment Amino acid

Amino acid
number

Probability
for Coil

B I

54

0.223

E K

55

0.669

E S

56

0.994



Performing structural similarity between original molecule and the one inserted with His-tag sequence have been done by MUSTANG server that built in via YASARA molecule viewer.5 The output would be distance calculation between interacting atoms called RMSD (Root-mean-square deviation). Following tables are summaries of the molecular similarity analysis. From the data that described above, all the combinations are acceptable, except LuxA, since its possible combination has high RMSD. The threshold is relative, but several literatures define the RMSD value of 2 as threshold for structure similarity.5,6,7


Table 1. RMSD Calculation within Several Protein Linked with His-tag.

Similarities between

RMSD

LuxA with LuxA + His 2.203 Å
LuxC with LuxC + His 0.985 Å
LuxD with LuxD + His 0.1777 Å
LuxE with LuxE + His 0.800
CheY-eYFP with CheY-eYFP+his 0.108 Å
eYFP with eYFP + His 0.315 Å
CheA with CheA + His 0.134 Å


In HB-EGF, the part that serves as binding domain for diphtheria exotoxin predominantly located in the extracellular environment. Therefore, the domain, expands between 20th – 160th amino acid, was selected from natural HB-EGF protein. On the other hand, the Tar domain that are functions to establish intracellular chemotactic signalling includes NdeI cutting-site (around 257th amino acid) until the utmost C-terminal of the protein (the 553rd amino acid).8-11 By those factors, our team also selected Tar domains involving the 1st – 33rd and 191st – 553rd amino acid as part of chimeric protein.


HB-EGF/Tar Receptor Modelling



Figure 1. The selected segment of Tar protein. The functional intracellular domain of Tar is shown as yellow box, blue box is transmembrane domain and orange box is periplasmic domain. Selected Tar domain expands from 1st -33rd amino acids and 191st -553rd amino acids. Modification of binding domain is located between 33rd – 191st amino acids


Our team have predicted the HB-EGF/Tar protein orientation in the Escherichia coli membrane. For this purpose, server TMHMM and OPM Membrane, are utilized to predict protein orientation.12,13 Conceptual hypothesis about the chimera protein is that it should begin its orientation of C-terminus in cytoplasm, then continued to fold into transmembrane and extracellular sites, as well as re-folding towards cytoplasm.


Figure 2. The graph above explains the result of HB-EGF/Tar orientation, which began from C-terminus (left) to N-terminus (right).12 Y-axis pictured the possibility of nth amino acid on protein located somewhere between transmembrane (red part), intracellular (blue line), and extracellular (pink line). There is also a diagram located above the graph that represent the most possible location of each domain (with elongated box).

From the results, it could be concluded that the protein was oriented as expected in the hypothesis. Therefore, the usage of chimera protein is predicted to be functional anatomically.



Figure 3.Molecular comparation of HB-EGF native protein (left) with the HB-EGF/Tar fusion (right).13,14 The pink-coloured domain is intracellularly located as the N-terminus, yellow-coloured domain for the transmembrane one. Then, purple-coloured could be a sign as the extracellular domain, finally folding into transmembrane and back to cytoplasm with orange-coloured and cyan-coloured domain respectively.

After deciding sequence combination of amino acids in modelled chimera HB-EGF/Tar protein, analyzing the interaction of both fusion protein and diphtheria exotoxin is extremely important to ensure functional ligand-receptor system. The basic concept of interaction modelling is that the protein will be bound to each other well if it causes the ‘environment’ energy (termed by E parameter; calculated by formula below) being lowered down. In this part, our team sent the respective sequence to ClusPro website for further analyzing.15

E = 0.4Erep + -0.40Eatt + 600Eelec + 1.00EDARS

Note: Erep and Eattr denote as repulsive and attractive contributions to the van der Waals interaction energy. Additionally, Eelec means an electrostatic energy that occur during both protein interaction. EDARS is a pairwise structure-based potential constructed by the Decoys of the Reference State (DARS) approach, and it primarily represents desolvation contributions, i.e., the free energy change due to the removal of the water molecules from the interface.15

Table 4. Comparation of E parameter of native and chimera protein of HB-EGF interacted with affitoxin.

HB-EGF
Protein

Median Energy (kcal/mol)

Lowest Energy (kcal/mol)

Native

-944.3

-994.3

Chimera

858.2

934.4


Figure 5.HB-EGF natural receptor and Affitoxin 3D interaction modelling result.

The result of interaction modelling is quantified as energy score based on the formula above. Referring to figure 4 and 5, we might expect that the affitoxin (cyan) would bind to both native and chimeric HB-EGF receptor that are both located in the extracellular (green). It is indicated by higher energy score of interaction between chimeric HB-EGF/Tar receptor-Affitoxin than that of to HB-EGF natural receptor-Affitoxin (Table 4). This means that the chimeric receptor could bind towards affitoxin as good (or even better) than the original one.


Beside the cell’s ability to detect toxin, our team also need to ensure the signaling machine works well. Our team also modelled the interaction between LuxA dan LuxB (that we fused with CheA). From figure 6 and 7, we might expect that both proteins are still able to interact normally after combining them with FRET unit (CheA or CheY protein).

Table 5. Comparation of E parameter of native and His-tagged protein of LuxB-CheA.

LuxAB

Median Energy (kcal/mol)

Lowest Energy (kcal/mol)

Native

-1515.4.3

-1553.2

Chimera

-1220.9

-1290.7


Figure 6.LuxA and LuxB-CheA (LuxAB-CheA) 3D interaction modelling result.
Figure 7..LuxA and LuxB 3D interaction modelling result.

Reference :
  1. J Yang, R Yan, A Roy, D Xu, J Poisson, Y Zhang. The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12: 7-8 (2015)
  2. A Roy, A Kucukural, Y Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5: 725-738 (2010)
  3. Y Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, vol 9, 40 (2008)
  4. Sun, S., Yang, X., Wang, Y., Shen, X., 2016. In Vivo Analysis of Protein–Protein Interactions with Bioluminescence Resonance Energy Transfer (BRET): Progress and Prospects. International Journal of Molecular Sciences 17, 1704. https://doi.org/10.3390/ijms17101704
  5. MUSTANG: A multiple structural alignment algorithm Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) Proteins 64,559-574
  6. Bordogna, A., Pandini, A., Bonati, L., 2010. Predicting the accuracy of protein-ligand docking on homology models. Journal of Computational Chemistry 32, 81–98. https://doi.org/10.1002/jcc.21601
  7. Carugo, O., 2003. How root-mean-square distance (r.m.s.d.) values depend on the resolution of protein structures that are compared. Journal of Applied Crystallography 36, 125–128. https://doi.org/10.1107/s0021889802020502
  8. Kanchan, K., Linder, J., Winkler, K., Hantke, K., Schultz, A. and Schultz, J. (2009). Transmembrane Signaling in Chimeras of the Escherichia coli Aspartate and Serine Chemotaxis Receptors and Bacterial Class III Adenylyl Cyclases. Journal of Biological Chemistry, 285(3), pp.2090-2099.
  9. Ward, S., Delgado, A., Gunsalus, R. and Manson, M. (2002). A NarX-Tar chimera mediates repellent chemotaxis to nitrate and nitrite. Molecular Microbiology, 44(3), pp.709-719.
  10. Melchers, L. S., Regensburg-Tuïnk, T. J., Bourret, R. B., Sedee, N. J., Schilperoort, R. A. and Hooykaas, P. J. (1989). Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. The EMBO Journal, 8(7), pp.1919-1925.
  11. Weerasuriya, S., Schneider, B. M. and Manson, M. D. (1998). Chimeric Chemoreceptors in Escherichia coli: Signaling Properties of Tar-Tap and Tap-Tar Hybrids. Journal of Bacteriology, 180(4), pp.914-920.
  12. Cbs.dtu.dk. (2018). TMHMM Server, v. 2.0. [online] Available at: http://www.cbs.dtu.dk/services/TMHMM/ [Accessed 22 Jul. 2018].
  13. Lomize M.A., Pogozheva I,D, Joo H., Mosberg H.I., Lomize A.L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res., 2012, 40(Database issue):D370-6
  14. Kelley LA et al. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10, pp.845-858
  15. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The ClusPro web server for protein-protein docking. Nature Protocols.2017 Feb;12(2):255-278 ; pdf
  16. Kozakov D, Beglov D, Bohnuud T, Mottarella S, Xia B, Hall DR, Vajda, S. How good is automated protein docking? Proteins: Structure, Function, and Bioinformatics, 2013 Aug ; pdf
  17. Kozakov D, Brenke R, Comeau SR, Vajda S. PIPER: An FFT-based protein docking program with pairwise potentials. Proteins. 2006 Aug 24; pdf
  18. Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: an automated docking and discrimination method for the prediction of protein complexes.Bioinformatics. 2004 Jan 1; pdf
  19. Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: a fully automated algorithm for protein-protein docking Nucleic Acids Research. 2004 Jul 1; pdf
  20. Högbom, M., Eklund, M., Nygren, P. Å., & Nordlund, P. (2003). Structural basis for recognition by an in vitro evolved affibody. Proceedings of the National Academy of Sciences, 100(6), 3191-3196.
  21. 2015.igem.org. (2018). Team:Stockholm/Description - 2015.igem.org. [online] Available at: https://2015.igem.org/Team:Stockholm/Description [Accessed 22 Jul. 2018].

Team UI Indonesia
  igemui2018@gmail.com