Line 8: | Line 8: | ||
<link rel="stylesheet" href="https://2018.igem.org/Template:TJU_China/nav_css?action=raw&ctype=text/css" type="text/css"> | <link rel="stylesheet" href="https://2018.igem.org/Template:TJU_China/nav_css?action=raw&ctype=text/css" type="text/css"> | ||
+ | <style> | ||
+ | .head { | ||
+ | font-size: 35px; | ||
+ | color: #4e72b8; | ||
+ | text-align: center; | ||
+ | margin-top: 50px; | ||
+ | } | ||
+ | |||
+ | .subhead { | ||
+ | font-size: 25px; | ||
+ | text-align: center; | ||
+ | margin-top: 50px; | ||
+ | } | ||
+ | |||
+ | .title { | ||
+ | font-size: 30px; | ||
+ | color: #4e72b8; | ||
+ | text-align: left; | ||
+ | margin-top: 50px; | ||
+ | } | ||
+ | |||
+ | .subtitle { | ||
+ | font-size: 25px; | ||
+ | color: #4e72b8; | ||
+ | text-align: left; | ||
+ | margin-top: 50px; | ||
+ | } | ||
+ | |||
+ | .word { | ||
+ | font-size: 20px; | ||
+ | text-align: left; | ||
+ | margin-top: 50px; | ||
+ | } | ||
+ | .figure{ | ||
+ | font-size: 15px; | ||
+ | text-align: middle; | ||
+ | margin-top: 20px; | ||
+ | } | ||
+ | img{ | ||
+ | margin: 0 auto; | ||
+ | margin-top: 30px; | ||
+ | } | ||
+ | </style> | ||
</head> | </head> | ||
Line 118: | Line 161: | ||
<div style=" margin-top:28px;z-index:10; border-top: solid #4e72b8 2px;width: 100%; position: fixed;"></div> | <div style=" margin-top:28px;z-index:10; border-top: solid #4e72b8 2px;width: 100%; position: fixed;"></div> | ||
+ | <div class="head">Dynamic Model of Heavy Metal Detection Biosensor</div> | ||
+ | <div class="subhead">Minghui Yin,Sherry Dongqi Bao<br>TianJin University<br>October 15,2018</div> | ||
+ | <div class="title">1 Introduction</div> | ||
+ | <div class="word">Modeling is a powerful tool in synthetic biology. It provides us with a necessary engineering approach to characterize our pathways | ||
+ | quantitatively and predict their performance,thus help us test and modify our design.Through the dynamic model of heavy-metal detection biosensor,we hope to gain insights into the characteristics of our whole circuit's dynamics. | ||
+ | </div> | ||
+ | <div class="title">2 Methods</div> | ||
+ | <div class="subtitle">2.1 Analysis of metabolic pathways</div> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/0/01/T--TJU_China--y1.png"> | ||
+ | <div class="figure">Figure 1: Metabolic pathways related to plasmid#1</div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<script src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> | <script src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> |
Revision as of 17:16, 16 October 2018
<!DOCTYPE >
Dynamic Model of Heavy Metal Detection Biosensor
Minghui Yin,Sherry Dongqi Bao
TianJin University
October 15,2018
TianJin University
October 15,2018
1 Introduction
Modeling is a powerful tool in synthetic biology. It provides us with a necessary engineering approach to characterize our pathways
quantitatively and predict their performance,thus help us test and modify our design.Through the dynamic model of heavy-metal detection biosensor,we hope to gain insights into the characteristics of our whole circuit's dynamics.
2 Methods
2.1 Analysis of metabolic pathways
Figure 1: Metabolic pathways related to plasmid#1