Difference between revisions of "Team:TJU China/Model"

Line 5: Line 5:
 
     <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 
     <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 
     <link rel="stylesheet" href="https://2018.igem.org/Template:TJU_China/default_CSS?action=raw&ctype=text/css" type="text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Template:TJU_China/default_CSS?action=raw&ctype=text/css" type="text/css">
 
+
    <link rel="stylesheet" href="https://2018.igem.org/Template:TJU_China/home_css?action=raw&ctype=text/css" type="text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Template:TJU_China/nav_css?action=raw&ctype=text/css" type="text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Template:TJU_China/nav_css?action=raw&ctype=text/css" type="text/css">
  
    <style>
 
        .head {
 
            font-size: 35px;
 
            color: #4e72b8;
 
            text-align: center;
 
            margin-top: 150px;
 
        }
 
 
        .subhead {
 
            font-size: 25px;
 
            text-align: center;
 
            margin-top: 50px;
 
            line-height: 1.5;
 
        }
 
 
        .title {
 
            font-size: 30px;
 
            color: #4e72b8;
 
            text-align: left;
 
            margin-top: 50px;
 
            margin-left: 10%;
 
 
        }
 
 
        .subtitle {
 
            font-size: 25px;
 
            color: #4e72b8;
 
            text-align: left;
 
            margin-top: 50px;
 
            margin-left: 10%;
 
        }
 
 
        .word {
 
            font-size: 20px;
 
            margin-left: 10%;
 
            margin-right: 10%;
 
            text-align: left;
 
            margin-top: 50px;
 
            line-height: 1.5;
 
        }
 
 
        /* .equation {
 
            float: left;
 
            font-size: 20px;
 
            margin-left: 30%;
 
            margin-right: 10%;
 
            text-align: center;
 
            margin-top: 30px;
 
            line-height: 1.5;
 
        }
 
        .number{
 
            float: left;
 
            font-size: 20px;
 
            margin-top: 40px;
 
        } */
 
 
        .figure {
 
            font-size: 15px;
 
            text-align: center;
 
            margin-top: 20px;
 
            line-height: 1.5;
 
        }
 
 
        .pic {
 
            margin-left: 10%;
 
            margin-right: 10%;
 
            width: 80%;
 
            margin-top: 30px;
 
        }
 
 
        .doublepic {
 
            float: left;
 
            margin-left: 10%;
 
            width: 40%;
 
            margin-top: 30%;
 
        }
 
 
        img {
 
            width: 100%;
 
            height: auto;
 
        }
 
    </style>
 
 
</head>
 
</head>
  
Line 166: Line 84:
 
                     HP
 
                     HP
 
                 </a>
 
                 </a>
                 <ul class="drop menu3">
+
                 <ul class="drop menu3" >
 
                     <li>
 
                     <li>
 
                         <a href="https://2018.igem.org/Team:TJU_China/Human_Practices">Human Practices</a>
 
                         <a href="https://2018.igem.org/Team:TJU_China/Human_Practices">Human Practices</a>
Line 200: Line 118:
 
     <div style=" margin-top:28px;z-index:10; border-top: solid #4e72b8 2px;width: 100%; position: fixed;"></div>
 
     <div style=" margin-top:28px;z-index:10; border-top: solid #4e72b8 2px;width: 100%; position: fixed;"></div>
  
    <div class="head">Dynamic Model of Heavy Metal Detection Biosensor</div>
 
    <div class="subhead">Minghui Yin,Sherry Dongqi Bao
 
        <br>TianJin University
 
        <br>October 15,2018</div>
 
    <div class="title">1 Introduction</div>
 
    <div class="word">Modeling is a powerful tool in synthetic biology. It provides us with a necessary engineering approach to characterize
 
        our pathways quantitatively and predict their performance,thus help us test and modify our design.Through the dynamic
 
        model of heavy-metal detection biosensor,we hope to gain insights into the characteristics of our whole circuit's
 
        dynamics.
 
    </div>
 
    <div class="title">2 Methods</div>
 
    <div class="subtitle">2.1 Analysis of metabolic pathways</div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/0/01/T--TJU_China--y1.png">
 
    </div>
 
    <div class="figure">Figure 1: Metabolic pathways related to plasmid#1</div>
 
    <div class="word">At the beginning, on the plasmid#1, the promoter $P_{arsR}$ isn't bound with ArsR,thus it is active.ArsR and smURFP are
 
        transcribed and translated under the control of the promoters $P_{arsR_{u}}$ and $P_{arsR_{d}}$,with subscript u
 
        and d representing upstream and downstream separately.The subscript l of smURFP in the equation means leaky expression
 
        without the expression of $As^{3+}$.As ArsR is expressed gradually,it will bind with the promoter $P_{arsR}$ and
 
        make it inactive.[1]</div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/a/a6/T--TJU_China--m1.PNG">
 
    </div>
 
    <div class="word">On the plasmid#2,the fusion protein of dCas9 and RNAP(RNA polymerase) are produced after transcription and translation,and
 
        sgRNA is produced after transcription.
 
    </div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/2/26/T--TJU_China--m2.png">
 
    </div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/2/2b/T--TJU_China--2.png">
 
    </div>
 
    <div class="figure">Figure 2: Metabolic pathways related to dCas9/RNAP</div>
 
    <div class="word">dCas9(*RNAP) can bind with its target DNA sequence without cutting, which is at the upstream of the promoter $P_{arsR_{d}}$.Simulataneously,dCas9
 
        can lead RNAP to bind with the promoter $P_{arsR_{d}}$ and enhance the transcription of smURFP.However,because the
 
        promoter $P_{arsR_{d}}$ has already bound with ArsR,as a result,RNAP can't bind with the promoter $P_{arsR_{d}}$.
 
        can’t bind with the promoter $P_{arsR_{d}}$.</div>
 
    <div class="word">However,at the presence of $As^{3+}$,it can bind with ArsR,then dissociate ArsR and $P_{arsR_{d}}$ , which makes the
 
        combination of RNAP and $P_{arsR_{d}}$ possible.</div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/4/4d/T--TJU_China--m3.png">
 
    </div>
 
    <div class="word">We then take degradation into account: </div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/a/a1/T--TJU_China--m4.png">
 
    </div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/3/32/T--TJU_China--m5.png">
 
    </div>
 
    <div class="subtitle">2.2 Analysis of ODEs</div>
 
    <div class="word">Applying mass action kinetic laws,we obtain the following set of differentiak equations.The several complexes involved:Ars$R^*$$P_{arsR}$,$As^{3+}$,${dCas9}^*$RNAP,${dCas9}^*$RNAP:sgRNA,${dCas9}^*$RNAP:${sgRNA}^*P_{arsR}$,
 
        are respectively abbreviated as $cplx_1$,$cplx_2$,$cplx_3$,$cplx_4$,$cplx_5$.</div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/e/e4/T--TJU_China--m6.png">
 
    </div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/4/45/T--TJU_China--m7.png">
 
    </div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/b/b7/T--TJU_China--m8.png">
 
    </div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/a/ad/T--TJU_China--m9.png">
 
    </div>
 
    <div class="subtitle">2.3 Simulation</div>
 
    <div class="word">Our simulation is based on two softwares: MATLAB (SimBiology Toolbox) and COPASI.
 
        <br> SimBiology Toolbox provides functions for modeling,simulating and analyzing biochemical pathways by the powerful
 
        computing engine of MATLAB.</div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/a/a5/T--TJU_China--s3.png">
 
    </div>
 
    <div class="figure">Figure 3:Reaction map generated from the reaction sets above by SimBiology Toolbox</div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/0/04/T--TJU_China--11.png">
 
    </div>
 
    <div class="figure">Figure 4:Simulation of smURFP production as a function of time by MATLAB Through the figure, we can see that the smURFP
 
        can gradually increase and reach a steady state after a period in the presence of arsenic ions.</div>
 
    <div class="subtitle">2.4 Sensitivity</div>
 
    <div class="word">A good biosystem should have certain stability towards fluctuations in parameters.A good model should reflect this,and
 
        hence a test for robustness can be essential to the model.
 
        <br> Robustness analysis can also pinpoint which reactions/parameters that are important for obtaining a specific biological
 
        behavior.A simple measure for sensitivity is to measure the relative change of a system feaure due to a change in
 
        a parameter.As for our model,the feature can be the equilibrium concentration of the smURFP(C) for which the sensitivity(S)
 
        to a parameter k is:
 
    </div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/1/11/T--TJU_China--m10.png">
 
    </div>
 
    <div class="word">After analysis, we found that the concentration of smURFP is relatively sensitive to parameters such as ktx3,ktl3,ktx4,kb4,kb6,kd2,kd5,
 
        kd6,kd7,kd8,kd11, etc. Among these parameters, except for the parameters that directly affect the production and
 
        degradation of smURFP,the rest of them are all related to dCas9-RNAP:sgRNA. It shows that our model reflects the
 
        critical role of dCas9-RNAP:sgRNA,which initially confirms our hypothesis:dCas0-RNAP can enhance transcription to
 
        increase the concentration of smURFP. However, due to the lack of previous modeling studies on dCas9-RNAP,some kinetic
 
        parameters may not be very accurate,and due to time limitation,we have not implemented experiments to measure related
 
        parameters,which may lead to some deviations in our model.
 
        <br> The sensitivity of each parameter is shown in the figures below.</div>
 
  
     <div>
+
     <div id="banner">
         <div class="doublepic">
+
         <div class="pic">
             <img src="https://static.igem.org/mediawiki/2018/f/f1/T--TJU_China--tx1.png">
+
             <a href="#" style="display:block;  ">
        </div>
+
                <img src="https://static.igem.org/mediawiki/2018/6/62/T--TJU_China--home1.jpg" />
        <div class="doublepic">
+
            </a>
             <img src="https://static.igem.org/mediawiki/2018/e/e0/T--TJU_China--tl1.png">
+
            <a href="#">
        </div>
+
                <img src="https://static.igem.org/mediawiki/2018/1/19/T--TJU_China--home2.jpg" />
    </div>
+
             </a>
    <div class="figure">(a)sensitivity of ktx1 (b)sensitivity of ktl1</div>
+
            <a href="#">
 +
                <img src="https://static.igem.org/mediawiki/2018/0/07/T--TJU_China--home3.jpg" />
 +
            </a>
 +
            <a href="#">
 +
                <img src="https://static.igem.org/mediawiki/2018/c/c0/T--TJU_China--home4.jpg" />
 +
            </a>
 +
            <a href="#">
 +
                <img src="https://static.igem.org/mediawiki/2018/9/9c/T--TJU_China--home5.jpg" />
 +
            </a>
 +
            <a href="#">
 +
                <img src="https://static.igem.org/mediawiki/2018/4/49/T--TJU_China--home6.jpg" />
 +
            </a>
 +
            <a href="#">
 +
                <img src="https://static.igem.org/mediawiki/2018/e/ed/T--TJU_China--home7.jpg" />
 +
            </a>
  
    <div>
 
        <div class="doublepic">
 
            <img src="https://static.igem.org/mediawiki/2018/8/8a/T--TJU_China--tx2.png">
 
 
         </div>
 
         </div>
         <div class="doublepic">
+
         <div class="btn_background"></div>
             <img src="https://static.igem.org/mediawiki/2018/4/41/T--TJU_China--tl2.png">
+
        <div class="btn">
        </div>
+
             <ul>
    </div>
+
                <li class="one"></li>
    <div class="figure">(c)sensitivity of ktx2 (d)sensitivity of ktl2</div>
+
                <li></li>
 +
                <li></li>
 +
                <li></li>
 +
                <li></li>
 +
                <li></li>
 +
                <li></li>
  
    <div>
 
        <div class="doublepic">
 
            <img src="https://static.igem.org/mediawiki/2018/1/1a/T--TJU_China--tx3.png">
 
        </div>
 
        <div class="doublepic">
 
            <img src="https://static.igem.org/mediawiki/2018/3/30/T--TJU_China--tl3.png">
 
        </div>
 
    </div>
 
    <div class="figure">(e)sensitivity of ktx3 (f)sensitivity of ktl3</div>
 
  
    <div>
+
             </ul>
        <div class="doublepic">
+
             <img src="https://static.igem.org/mediawiki/2018/0/03/T--TJU_China--tx4.png">
+
 
         </div>
 
         </div>
        <div class="doublepic">
 
            <img src="https://static.igem.org/mediawiki/2018/c/c9/T--TJU_China--b1.png">
 
        </div>
 
    </div>
 
    <div class="figure">(g)sensitivity of ktx4 (h)sensitivity of kb1</div>
 
  
    <div>
 
        <div class="doublepic">
 
            <img src="https://static.igem.org/mediawiki/2018/6/69/T--TJU_China--b2.png">
 
        </div>
 
        <div class="doublepic">
 
            <img src="https://static.igem.org/mediawiki/2018/3/33/T--TJU_China--b3.png">
 
        </div>
 
 
     </div>
 
     </div>
    <div class="figure">(i)sensitivity of kb2 (j)sensitivity of kb3</div>
 
  
    <div>
 
        <div class="doublepic">
 
            <img src="https://static.igem.org/mediawiki/2018/a/a9/T--TJU_China--b4.png">
 
        </div>
 
        <div class="doublepic">
 
            <img src="https://static.igem.org/mediawiki/2018/2/2b/T--TJU_China--b5.png">
 
        </div>
 
    </div>
 
    <div class="figure">(a)sensitivity of kb4 (b)sensitivity of kb5</div>
 
  
     <div>
+
     <div class="home_abstract_logo"></div>
        <div class="doublepic">
+
 
            <img src="https://static.igem.org/mediawiki/2018/e/e9/T--TJU_China--b6.png">
+
    <div class="home_abstract">
 +
        <div class="home_abstract_head">
 +
            ABSTRACT
 
         </div>
 
         </div>
         <div class="doublepic">
+
         <div class="home_abstract_word">
             <img src="https://static.igem.org/mediawiki/2018/5/5b/T--TJU_China--d1.png">
+
             &nbsp;&nbsp;&nbsp;&nbsp; This year, the CRISPR-Cas family is the protagonist in our story series. The old member, dCas9,
 +
            is the enhancer for the heavy-metal detection based on E. coli, while the newbie, Cas12a, is a worker for the
 +
            high-throughput cancer-related SNP detection chip. We have also built a "highway" for tracking and delivering
 +
            the Cas9/sgRNA complex in mammalian cells, and we try to apply it to manipulate the mitochondrial genome.
 
         </div>
 
         </div>
 
     </div>
 
     </div>
    <div class="figure">(c)sensitivity of kb6 (d)sensitivity of kd1</div>
 
  
     <div>
+
     <div class="home_medal">
        <div class="doublepic">
+
        <a href="https://2018.igem.org/Team:TJU_China/Medal">
            <img src="https://static.igem.org/mediawiki/2018/5/56/T--TJU_China--d2.png">
+
            <img class="home_medal_pic" src="https://static.igem.org/mediawiki/2018/7/70/T--TJU_China--medal.png"> </a>
        </div>
+
        <div class="doublepic">
+
            <img src="https://static.igem.org/mediawiki/2018/0/0a/T--TJU_China--d3.png">
+
        </div>
+
 
     </div>
 
     </div>
     <div class="figure">(e)sensitivity of kd2 (f)sensitivity of kd3</div>
+
     <div class="home_achievements_logo"></div>
 
+
     <div class="home_achievements">
     <div>
+
         <div class="home_achievements_head">
         <div class="doublepic">
+
             ACHIEVEMENTS
             <img src="https://static.igem.org/mediawiki/2018/4/44/T--TJU_China--d4.png">
+
 
         </div>
 
         </div>
        <div class="doublepic">
 
            <img src="https://static.igem.org/mediawiki/2018/2/2f/T--TJU_China--d5.png">
 
        </div>
 
    </div>
 
    <div class="figure">(g)sensitivity of kd4 (h)sensitivity of kd5</div>
 
  
    <div>
+
         <div class="home_achievements_word">
         <div class="doublepic">
+
             <div>
             <img src="https://static.igem.org/mediawiki/2018/e/e4/T--TJU_China--d6.png">
+
                Click the medals to see how we met
        </div>
+
                <br> the iGEM medal requirements for 2018!</div>
        <div class="doublepic">
+
            <img src="https://static.igem.org/mediawiki/2018/3/35/T--TJU_China--d7.png">
+
 
         </div>
 
         </div>
 
     </div>
 
     </div>
    <div class="figure">(a)sensitivity of kd6 (b)sensitivity of kd7</div>
 
  
     <div>
+
     <div class="home_contact">
         <div class="doublepic">
+
         <div class="home_contact_icon1">
             <img src="https://static.igem.org/mediawiki/2018/c/c5/T--TJU_China--d8.png">
+
             <img style="max-width:100%;height:auto;" src="https://static.igem.org/mediawiki/2018/e/e7/T--TJU_China--tju_logo.png">
 
         </div>
 
         </div>
         <div class="doublepic">
+
         <div class="home_contact_word1">
             <img src="https://static.igem.org/mediawiki/2018/4/44/T--TJU_China--d9.png">
+
             <div>天津大学</div>
 +
            <div>TianJin University</div>
 
         </div>
 
         </div>
    </div>
+
        <div class="home_contact_icon2">
    <div class="figure">(c)sensitivity of kd8 (d)sensitivity of kd9</div>
+
            <img style="max-width:100%;height:auto;" src="https://static.igem.org/mediawiki/2018/d/d1/T--TJU_China--life_science_logo.png">
 
+
    <div>
+
        <div class="doublepic">
+
            <img src="https://static.igem.org/mediawiki/2018/3/3d/T--TJU_China--d10.png">
+
 
         </div>
 
         </div>
         <div class="doublepic">
+
         <div class="home_contact_word2">
             <img src="https://static.igem.org/mediawiki/2018/7/7a/T--TJU_China--d11.png">
+
             <div>天津大学生命科学学院</div>
 +
            <div>School of life Sciences,</div>
 +
            <div>TianJin University</div>
 
         </div>
 
         </div>
    </div>
 
    <div class="figure">(e)sensitivity of kd10 (f)sensitivity of kd11</div>
 
    <div class="figure">Note:The ordinate axis represents the sensitivity S,and the abscissa axis is the parameter k for which we want to evaluate
 
        the sensitivity.</div>
 
    <div class="subtitle">2.5 Application of the model</div>
 
    <div class="word">Since the goal of our project is to increase the sensitivity of biosensors by introducing a complex of dCas9-RNAP and
 
        sgRNA, and one of the purposes of our model is to explore whether this complex is effective.So we assume a reasonable
 
        and large enough concentration value for this complex. We use the concentration of Glyceraldehyde-3-phosphate dehydrogenase
 
        A as the assumed concentration.Glyceraldehyde-3-phosphate dehydrogenase A(gapA) is a crucial enzyme in the glycolytic
 
        pathway,and the gene encoding this enzyme is a housekeeping gene in E.coli cells with high expression levels.We find
 
        in the literature that the protein mass of gapA is 48645 fg/cell,and its molecular weight is 35492 Da.[4] The amount
 
        of abundance of Glyceraldehyde-3-phosphate dehydrogenase A protein per cell can be calculated as follows:
 
    </div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/c/c3/T--TJU_China--m11.png">
 
    </div>
 
    <div class="word">As for the size of E.coli,we found relevant data from the literature,as the figure below shows.[5]</div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/a/a7/T--TJU_China--dc.png">
 
    </div>
 
    <div class="figure">Figure 8:Size of E.coli </div>
 
    <div class="word">The volume of E.coli can be calculated as follows:</div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/2/2a/T--TJU_China--m12.png">
 
    </div>
 
    <div class="word">Then the concentration of Glyceraldehyde-3-phosphate dehydrogenase A protein in the cell can be determined:</div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/3/3a/T--TJU_China--m13.png">
 
    </div>
 
    <div class="word">With this concentration,we can get very nice results:</div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/d/d1/T--TJU_China--23.png">
 
    </div>
 
    <div class="figure">Figure 9:smURFP production with enough dCas9-RNAP:sgRNA</div>
 
    <div class="word">Compared to the diagram without introducing dCas9-RNAP:sgRNA:</div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/0/0b/T--TJU_China--21.png">
 
    </div>
 
    <div class="figure">Figure 10:smURFP production within a reasonable time frame</div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/6/6c/T--TJU_China--22.png">
 
    </div>
 
    <div class="figure">Figure 11:smURFP production reached equilibrium but it takes a long time</div>
 
    <div class="word">From these three figures, we can conclude that dCas9-RNAP:sgRNA does have the effect of promoting transcription and increasing
 
        fluorescence intensity,thereby increasing sensitivity,as long as its concentration is sufficient.This result enhances
 
        the confidence of the experimental group,and they need to try to improve the expression of dCas9-RNAP:sgRNA in E.coli
 
        without having to doubt its role.
 
    </div>
 
    <div class="head">References</div>
 
    <div class="word">[1] LA Pola-Lopez et al."Novel arsenic biosensor "POLA" obtained by a genetically modified E.coli bioreporter cell" .In:Sensors
 
        and Actuators B:Chemical254(2018),pp.1061-1068.
 
        <br>[2] Yves Berset et al."Mechanistic Modeling of Genetic Circults for ArsR Arsenic Regulation".In:ACS synthetic biology
 
        6.5(2017),pp.862-874.
 
        <br>[3] Eyal Karzbrun et al."Coares-grained dynamics of protein synthesis in a cell-free system".In:Phtsical review letters
 
        106.4(2011),p.048104.
 
        <br> [4] Yasushi Ishihama et al."Exponentially modified protein abundance index(emPAI) for estimation of absolute protein
 
        amount in proteomics by the number of sequenced peptides per protein".In:Molecular E Cellular Proteomics 4.9(2005),pp.1265-1272.
 
        <br>[5] Nili Crossman,Eliora Z Ron,and Conrad L Woldringh."Changes in cell dimensions during amino acid starvation of
 
        Escherichia coli."In:Journal of bacteriology 152.1(1982),pp.35-41.
 
    </div>
 
  
 +
        <div class="home_copyright">@IGEM 2018 TJU_China.All Rights Reserved.丨Contact us:syq47xx@sina.cn丨(Designed by Peicheng Li)</div>
  
 
    <div class="head">Construction of Free Energy Model</div>
 
    <div class="subhead">Zheng Hu,Sherry Dongqi Bao
 
        <br>TianJin University
 
        <br>October 10,2018</div>
 
    <div class="title">1 Introduction</div>
 
    <div class="word">Nowadays,the analysis of cleavage possibility can be devided into two type,i,e.meta-empirical and empirical.For the first
 
        one, people develop the various score function based on experiment data to evaluate if a sgDNA is good or bad.Correspondingly,the
 
        other group chooce set up a theoretical model based on kinetic theory.But because using many approximations,it has
 
        drawbacks inevitably.
 
        <br>Our model aims to investigate the off-target problem in gene editing by the CRISPR-Cas system,therefore finding efficient
 
        ways to enhance the reliability of gene editing.The foundations of thsi model are mostly simple probability theory
 
        and dynamic deduction,which make our model both convincing and pellucid.
 
        <br>Currently,people have constructed a similar model as illustrated in the following figure1.There are four common rules
 
        when Cas nuclease cleaves the DNA[1].
 
    </div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/4/4f/T--TJU_China--z1.png">
 
    </div>
 
    <div class="figure">Figure q:schematic diagram</div>
 
    <div class="word">(1)Seed region:single mismatch(es) within a PAM proximal seed region can completely disrupt interference.
 
        <br> (2)Mismatch spread:when mismatches are outside the seed region,off-targets with spread out mismatches are targeted
 
        most strongly.
 
        <br> (3)Differential binding versus differential cleavage:binding is more tolerant of mismatched than cleavage.
 
        <br>(4)Specificity-efficiency decoupling:weakened protein-DNA interatctions can improve target selectivity while still
 
        maintaining efficiency.
 
        <br>Based on these four rules,probability theory is applied in to explain it.As we know,there are always only two results
 
        in an experiment,which are successful cleavage and unsuccessful cleavage.In math view,it can be one-hot encoded,and
 
        they are corresponding to 1 and 0.
 
    </div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/d/d9/T--TJU_China--z2.png">
 
    </div>
 
    <div class="figure">Figure 2</div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/4/44/T--TJU_China--z3.png">
 
    </div>
 
    <div class="figure">Figure 3</div>
 
    <div class="word">However,giving a 0/1 prediction is hard and unreliable.To solve this problem, one choice is to consider it as a cluster
 
        problem;however,it is easier to find a continuous quantitative function rather than to find a suitable cluster distance
 
        function.Sonaturally,finding an approximate probability distribution is a good choice.
 
        <br> In many target design toolkits,they use a score function with several param eters which can generate a score to
 
        evaluate whether the target is good or bad. Here we consider the score function has the similar ability to probability,which
 
        is a description of ”better” or ”worse” while can’t affirm whether successful cleavage willappear.For our case,our
 
        goal is to find a function indicating which target is BETTER.
 
        <br> Considering the difference between model prediction and experimental data,our model consists of two aspects,which
 
        are kinetic inference and an updating module.
 
    </div>
 
    <div class="title">2 Methods</div>
 
    <div class="subtitle">2.1 Knietic module</div>
 
    <div class="word">Figure 2 shows that the whole binding-cleavage process begins with the bind ing between PAM andprotein.Therefore,it corresponds
 
        to rule1 mentioned before.And as the reaction proceeds,every step of it is reversible,and its irre versibility mainly
 
        depends on the binding energy of two DNA bases. The boundary probability Pclv;N,representing the probability of matching
 
        at the Nth position(the last position of sgRNA) of nucleotide base,is given by:
 
    </div>
 
    <div class="pic">
 
        <img src="https://static.igem.org/mediawiki/2018/9/92/T--TJU_China--m14.png">
 
 
     </div>
 
     </div>
  
     <div class="pic"><img src="https://static.igem.org/mediawiki/2018/d/df/T--TJU_China--z4.png"></div>
+
     <script src="https://2018.igem.org/Template:TJU_China/jquery-3.0.0.min_js?action=raw&ctype=text/javascript"></script>
    <div class="figure">Figure 4</div>
+
     <script src="https://2018.igem.org/Template:TJU_China/home_js?action=raw&ctype=text/javascript"></script>
    <div class="pic"><img src="https://static.igem.org/mediawiki/2018/f/f7/T--TJU_China--z5.png"></div>
+
 
    <div class="figure">Figure 5</div>
+
    <div class="word">Where k is the reaction rate constant; f represents the forward reactions;b represents the backward reaction.And </div>
+
    <div class="pic"><img src="https://static.igem.org/mediawiki/2018/e/ec/T--TJU_China--zm1.PNG"></div>
+
    <div class="word">So for a complete match:</div>
+
    <div class="pic"><img src="https://static.igem.org/mediawiki/2018/0/00/T--TJU_China--zm2.png"></div>
+
    <div class="word">Consider the rate constant $K_f(i)$ and #k_b(i)$:</div>
+
    <div class="pic"><img src="https://static.igem.org/mediawiki/2018/b/b2/T--TJU_China--zm3.png"></div>
+
     <div class="word">where $F_i$ means free energy of each metastable state,$T_{i,i+1}$means the highest free energy point on the reaction path from position i
+
        to position i+1.Therefore,$T_{i,i+1}$-$F_i$ is the activation energy of forward reaction and $T_{i,i+1}$-$F_i$ is activation energy of the backward reaction.
+
    </div>
+
    <div class="pic"><img src="https://static.igem.org/mediawiki/2018/0/02/T--TJU_China--zm4.png"></div>
+
    <div class="word">We define</div>
+
    <div class="pic"><img src="https://static.igem.org/mediawiki/2018/f/fe/T--TJU_China--zm5.png"></div>
+
    <div class="word">So</div>
+
    <div class="pic"><img src="https://static.igem.org/mediawiki/2018/9/93/T--TJU_China--zm6.png"></div>
+
    <script src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
+
    <script type="text/x-mathjax-config">
+
    MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
+
  </script>
+
 
</body>
 
</body>
<!-- <div>
 
<div class="pic"><img src=""></div>
 
<div class="word"></div>
 
<div class="figure">Figure </div>
 
    <div class="title"></div>
 
    <div class="subtitle"></div>
 
 
 
 
$P_{arsR_{d}}$
 
 
$As^{3+}$
 
<div class="equation">  \(P_{J23104} \xrightarrow {k_{tx1}}  P_{J23104} + mRNA_{ArsR}\)</div> <div class="number">(1)</div>
 
</div> -->
 
  
 
</html>
 
</html>

Revision as of 00:31, 17 October 2018

<!DOCTYPE >

ABSTRACT
     This year, the CRISPR-Cas family is the protagonist in our story series. The old member, dCas9, is the enhancer for the heavy-metal detection based on E. coli, while the newbie, Cas12a, is a worker for the high-throughput cancer-related SNP detection chip. We have also built a "highway" for tracking and delivering the Cas9/sgRNA complex in mammalian cells, and we try to apply it to manipulate the mitochondrial genome.
ACHIEVEMENTS
Click the medals to see how we met
the iGEM medal requirements for 2018!
天津大学
TianJin University
天津大学生命科学学院
School of life Sciences,
TianJin University