Difference between revisions of "Team:NCKU Tainan/Kinetic Law"

Line 68: Line 68:
 
                                             Michaelis and Menten considered a quasi equilibrium between E and the ES-Complex to simplify the system.
 
                                             Michaelis and Menten considered a quasi equilibrium between E and the ES-Complex to simplify the system.
 
                                         </p>
 
                                         </p>
                                         <p class="pcontent">$${{d[S] \over dt} = -k_1[E] \cdot S + k_{-1}[ES]}$$</p>
+
                                         <p class="pcontent">$${{d[S] \over dt} = -k_1[E] \cdot [S]+ k_{-1}[ES]}$$</p>
                                         <p class="pcontent">$${{d[ES]\over dt} = k_1[E] \cdot S - (k_{-1} + k_2)[ES]}$$</p>
+
                                         <p class="pcontent">$${{d[ES]\over dt} = k_1[E] \cdot [S] - (k_{-1} + k_2)[ES]}$$</p>
                                         <p class="pcontent">$${{d[E] \over dt} = k_1[E] \cdot S - (k_{-1} + k_2)[ES]}$$</p>
+
                                         <p class="pcontent">$${{d[E] \over dt} = k_1[E] \cdot [S] - (k_{-1} + k_2)[ES]}$$</p>
 
                                         <p class="pcontent">$${{d[P] \over dt} = k_2[ES]}$$</p>
 
                                         <p class="pcontent">$${{d[P] \over dt} = k_2[ES]}$$</p>
                                         <p class="pcontent">After derivation $${v = {-ds \over dt} = {dP \over dt}}$$</p>
+
                                         <p class="pcontent">After derivation $${v = {-ds \over dt} = {d[P] \over dt}}$$</p>
 
                                         <p class="pcontent">where V<sub>m</sub> represents the maximum rate achieved by the system,  
 
                                         <p class="pcontent">where V<sub>m</sub> represents the maximum rate achieved by the system,  
 
                                             and the Km is the substrate concentration at which the reaction rate is half of V<sub>m</sub>.
 
                                             and the Km is the substrate concentration at which the reaction rate is half of V<sub>m</sub>.
Line 90: Line 90:
 
                                         </p>
 
                                         </p>
 
                                         <p class="pcontent">$${{d[S] \over dt} = -k_1[E] \cdot [S] + k_{-1}[ES]}$$</p>
 
                                         <p class="pcontent">$${{d[S] \over dt} = -k_1[E] \cdot [S] + k_{-1}[ES]}$$</p>
                                         <p class="pcontent">$${{d[ES] \over dt} = k_1[E] \cdot [S] + k_{-2}[E] \cdot P - (k_{-1} + k_2)[ES]}$$</p>
+
                                         <p class="pcontent">$${{d[ES] \over dt} = k_1[E] \cdot [S] + k_{-2}[E] \cdot [P] - (k_{-1} + k_2)[ES]}$$</p>
                                         <p class="pcontent">$${{d[E] \over dt} = k_1[E] \cdot [S] - k_{-2}[E] \cdot P - (k_{-1} + k_2)[ES]}$$</p>
+
                                         <p class="pcontent">$${{d[E] \over dt} = k_1[E] \cdot [S] - k_{-2}[E] \cdot [P] - (k_{-1} + k_2)[ES]}$$</p>
                                         <p class="pcontent">$${v = {dP \over dt} = k_2[ES] - k_{-2}E \cdot P = v_f - v_b}$$</p>
+
                                         <p class="pcontent">$${v = {d[P] \over dt} = k_2[ES] - k_{-2}E \cdot [P] = v_f - v_b}$$</p>
                                         <p class="pcontent">After derivation $${v = {-ds \over dt} = {dP \over dt}}$$</p>
+
                                         <p class="pcontent">After derivation $${v = {-ds \over dt} = {d[P] \over dt}}$$</p>
 
                                         <p class="pcontent">Finally we use V<sub>fmax</sub> = k2⋅Etotal and V<sub>bmax</sub> = k<sub>−1</sub>⋅Etotal to get the common form for the reversible Michaelis Menten equation</p>
 
                                         <p class="pcontent">Finally we use V<sub>fmax</sub> = k2⋅Etotal and V<sub>bmax</sub> = k<sub>−1</sub>⋅Etotal to get the common form for the reversible Michaelis Menten equation</p>
 
                                         <p class="pcontent">$${v = {v^{max}_f S/K_{m,1} - v^{max}_b P/K_{m,2} \over (1 + S/K_{m,1} + P/K_{m,1})}}$$</p>
 
                                         <p class="pcontent">$${v = {v^{max}_f S/K_{m,1} - v^{max}_b P/K_{m,2} \over (1 + S/K_{m,1} + P/K_{m,1})}}$$</p>

Revision as of 19:49, 17 October 2018

Kinetic law

Ideas Come True
Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)