Difference between revisions of "Team:METU HS Ankara/Composite Part"

(Prototype team page)
 
Line 1: Line 1:
{{METU_HS_Ankara}}
+
{{METU_HS_Ankara/Inner_Header}}
 
<html>
 
<html>
  
 +
    <header class="ct-pageHeader ct-pageHeader--type2 ct-u-shadowBottom--type2 ct-pageHeader--motive ct-pageHeader--hasDescription ct-u-paddingBoth10">
 +
        <div class="container ct-u-triangleBottomLeft">
 +
            <div class="row">
 +
                <div class="col-md-12">
 +
                    <h1 class="text-capitalize ct-fw-600 ct-u-colorWhite">
 +
                        Composite Parts
 +
                    </h1>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </header>
  
 +
    <section class="ct-u-paddingBoth100">
 +
        <div class="container">
 +
            <img src="https://static.igem.org/mediawiki/2018/f/fd/T--METU_HS_Ankara--world.jpg" />
  
<div class="column full_size judges-will-not-evaluate">
+
            <h3>Composite Part 1:</h3>
<h3>★  ALERT! </h3>
+
            <h5>FucO/ L-1,2-Propanediol Oxidoreductase</h5>
<p>This page is used by the judges to evaluate your team for the <a href="https://2018.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2018.igem.org/Judging/Awards"> award listed below</a>. </p>
+
            <p>
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2018.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
                FucO is the gene that codes for L-1,2-propanediol oxidoreductase which is a NADH-linked, homodimer enzyme having the role
</div>
+
                of acting on furfural which is a toxic inhibitor of microbial fermentations causing cell wall and membrane damage, DNA breaks
 +
                down and reduced enzymatic activities (Zheng, 2013; Liu, Ma & Song, 2009).
 +
            </p>
  
 +
            <p>
 +
                The enzyme catalyzes L-lactaldehyde and L-1,2- propanediol while dissimilating fucose in which acetaldehyde, ethylene glycerol,
 +
                L-lactaldehyde and some more substances are used as substrates. Despite these, it takes an important role in furan reduction to
 +
                its alcohol derivative (Wang et al., 2011).
 +
            </p>
  
<div class="clear"></div>
+
            <h6>Our circuit design for FucO gene</h6>
 +
            <p>
 +
                Our circuit consists of prefix, a strong promoter (J23100), RBS (B0034), FucO as protein coding region, double terminator (B0015)
 +
                and suffix. This part enables our E. coli KO11 strain to convert toxic furfural into furfuryl alcohol. Our construct is inserted
 +
                into pSB1C3 and delivered to the Registry.
 +
            </p>
  
 +
            <p>
 +
                FucO has NADH-dependent furan reductase activity. When furfural is present in the field, the metabolism of furfural by NADPH-dependent
 +
                oxidoreductases go active in order to reduce it to its less toxic alcohol derivative-furfuryl alcohol (Zheng, 2013; Wang et al., 2013;
 +
                Allen et al., 2010).
 +
            </p>
  
 +
            <p>
 +
                In this metabolism, the expression of oxidoreductases that are NADPH-dependent, such as YqhD, are shown to inhibit the growth and
 +
                fermentation in E. coli by competing for biosynthesis with NADPH (Zheng, 2013).
 +
            </p>
  
 +
            <p>
 +
                Because the native conversion of NADH to NADPH in E. coli is insufficient to revitalize the NADPH pool during fermentation, the actions
 +
                shouldn’t be interfering with NADPH metabolism (Wang et al., 2011). Thus, the overexpression of plasmid-based NADH-dependent propanediol
 +
                oxidoreductase (FucO) gene may reduce furfural to ultimately improve furfural resistance without detrimentally affecting the biosynthesis
 +
                of NADPH (Wang et al., 2011).
 +
            </p>
  
 +
            <p>
 +
                Figure 2: The overexpression of FucO and YqhD and relationships with furfural resistance traits, metabolism, and reducing cofactors
 +
                (Wang et al., 2013).
 +
            </p>
  
<div class="column full_size">
+
            <p>
<h1>Composite Parts</h1>
+
                In order to make our gene compatible with RFC 10, 25 and 1000, we reconstructed the nucleotides to get rid of the restriction sites
 +
                while protecting the amino acid sequence. We looked through the codon bias property of E. coli and made the nucleotide changes accordingly.
 +
            </p>
  
 +
            <p>
 +
                We’ve inserted the FucO composite part to pSB1C3 and pSB1A3 backbones. Then, we’ve transformed the construct for submission, BBa_K2571003,
 +
                (in pSB1C3) to DH5 alpha; and the other construct, for our biochemical assay,  (in pSB1A3) to KO11. As we isolated the plasmids, we’ve done
 +
                PCR with FucO left and VR primers to test orientation of our parts to the backbone. We expected a band of 754 bp between the FucO left and
 +
                VR primers and the PCR results confirmed our expectations and showed that our parts were correctly inserted and transformed.
 +
            </p>
  
<p>
+
            <h3>Composite 2:</h3>
A composite part is a functional unit of DNA consisting of two or more basic parts assembled together. <a href="http://parts.igem.org/wiki/index.php/Part:BBa_I13507">BBa_I13507</a> is an example of a composite part, consisting of an RBS, a protein coding region for a red fluorescent protein, and a terminator.
+
            <h5>GSH:Bifunctional gamma-glutamate-cysteine ligase/glutathione synthetase</h5>
</p>
+
  
<p>New composite BioBrick devices can be made by combining existing BioBrick Parts (like Inverters, Amplifiers, Smell Generators, Protein Balloon Generators, Senders, Receivers, Actuators, and so on).</p>
+
            <p>
</div>
+
                Glutathione (GSH) is an important antioxidant that has a sulfur compound; a tripeptide composed of three amino acids (cysteine, glycine
 +
                and glutamic acid) and a non-protein thiol (Pizzorno, 2014; Lu, 2013). GSH is generally found in the thiol-reduced from which is crucial
 +
                for detoxification of ROS and free radicals which cause oxidative stress (Lu, 2013; Burton & Jauniaux, 2011).
 +
            </p>
  
<div class="column full_size">
+
            <p>
<div class="highlight decoration_background">
+
                Reactive Oxygen Species are dangerous substances that distort protein based matters by taking electrons (Lu, 2013). The chemical structure
<h3>Note</h3>
+
                of the protein-based substances are altered and become dysfunctional because of ROS (Lu, 2013; Burton & Jauniaux, 2011).  
<p>This page should list all the composite parts your team has made during your project. You must add all characterization information for your parts on the Registry. You should not put characterization information on this page. Remember judges will only look at the first part in the list for the Best Composite Part award, so put your best part first!</p>
+
            </p>
</div>
+
</div>
+
  
 +
            <p>
 +
                Furthermore, one of the most significant protein-based substance, DNA get attacked by OH radicals (Burton & Jauniaux, 2011). However,
 +
                the reduced form GSH can protect the chemical structure of the proteins by giving extra electrons to the ROS and free radicals (Lu, 2013).
 +
                This is accomplished by GSH peroxidase-catalyzed reactions (Lu, 2013).
 +
            </p>
  
 +
            <p>
 +
                In order to make our gene compatible with RFC 10, 25 and 1000, we reconstructed the nucleotides to get rid of the restriction sites while
 +
                protecting the amino acid sequence. We looked through the codon bias property of E.coli and made the nucleotide changes accordingly.
 +
            </p>
  
<div class="column full_size">
+
            <h6>Our circuit design for GSH gene</h6>
<h3>Best Composite Part Special Prize</h3>
+
  
<p>To be eligible for this award, this part must adhere to <a href="http://parts.igem.org/DNA_Submission">Registry sample submission guidelines</a> and have been sent to the Registry of Standard Biological Parts. If you have a part you wish to nominate your team for this <a href="https://2018.igem.org/Judging/Awards">special prize</a>, make sure you add your part number to your <a href="https://2018.igem.org/Judging/Judging_Form">judging form</a> and delete the box at the top of this page.
+
            <p>
 +
                Our circuit consists of prefix, a strong promoter (J23100), RBS (B0034), GSH as  A protein coding region, double terminator (B0015) and  
 +
                suffix. This part enables our E. coli KO11 strain to overexpress Oxidised Glutathione to reduce oxidative stress, increasing its lifespan.  
 +
                (Lu, 2013) Our construct is inserted into pSB1C3 and delivered to the Registry.
 +
            </p>
  
<br><br>
+
            <span class="ct-blockquote-text ct-fs-i ct-fw-300 ct-u-arapey">Composite 2 (GSH) PCR Results With The Primers GSH Left and GSH Right:</span>
<b>Please note:</b> Judges will only look at the first part number you list, so please only enter ONE (1) part number in the judging form for this prize. </p>
+
  
</div>
+
            <p>
 +
                We’ve inserted the GSH composite part to pSB1C3 backbone. Then, we’ve transformed the construct for submission,
 +
                <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571005">BBa_K2571005</a>, (in pSB1C3)
 +
                to DH5 alpha and conducted colony PCR. We’ve made the PCR with GSH specific primers and expected to see a result of 225bp. By showing the
 +
                band we expected, 225bp, PCR confirmation for our insertion proved right.
 +
            </p>
 +
 
 +
            <h3>Composite 3:</h3>
 +
            <h5>Dual Expression of FucO and GSH</h5>
 +
 
 +
            <p>
 +
                The first protein coding region we have, placed after the RBS, FucO, will code for L-1,2-propanediol oxidoreductase (a homodimer enzyme)
 +
                in order to act upon furfural presence in the field (Zheng, 2013). The metabolism of furfural by NAD(P)H-dependent oxidoreductases will
 +
                reduce the toxicity of the chemical by turning it into furfuryl alcohol, a derivative and increase the furfural tolerance (Zheng, 2013;
 +
                Wang et al., 2013; Allen et al., 2010). Our second protein coding region, bifunctional gamma-glutamate-cysteine ligase/glutathione
 +
                synthetase (GSH), is a non-protein thiol group and a tripeptide composed of cysteine, glycine and glutamic acid (Lu, 2013). It is crucial
 +
                for the detoxification of reactive oxygen species and free radicals (Ask et al, 2013). Reactive oxygen species (ROS) are harmful substances
 +
                that alter protein based matters by taking electrons (Lu, 2013; Burton & Jauniaux, 2011). Because many benefits of GSH include scavenging
 +
                of ROS, protection against endogenous toxic metabolites and detoxification of xenobiotics, we choose this gene to entagrate with the FucO
 +
                (Höck et al., 2013). Thus we constructed multi functional gene providing long life span and resistance.
 +
            </p>
 +
 
 +
            <h5>Design Notes of Dual Expression of FucO and GSH</h5>
 +
 
 +
            <p>
 +
                Our construct for composite part 3 is composed of two stages, first the reduction of furans (specifically furfural and 5-HMF) and second
 +
                the detoxification of reactive oxygen species (ROS). Our first composite part, fucO gene coding for L-1,2-propanediol oxidoreductase along
 +
                with the promoter J23100, RBS B0034 and double terminator B0034, is NADH-dependent, which highly benefits to the construct of our project.
 +
                Our construct is inserted into pSB1C3 and delivered to the Registry.
 +
            </p>
 +
 
 +
            <p>
 +
                As fucO is NADH-dependent it outperforms other oxidoreductases, by not interfering with the NADPH metabolism of the organism while converting
 +
                highly toxic substances, furfural and 5-HMF to non-harmful alcohols. This characteristic of fucO is crucial because the expression of
 +
                oxidoreductases like Yqhd are NADPH-dependent, hence they compete with the biosynthesis for NADPH, which results in inhibiting the growth of
 +
                the organism.
 +
            </p>
 +
 
 +
            <section class="ct-u-paddingTop50 ct-u-paddingBottom80 ct-u-borderBoth ct-u-backgroundGray">
 +
                <div class="container">
 +
                    <div class="row">
 +
                        <div class="col-md-6">
 +
                            <div class="panel-group" id="accordion">
 +
                                <div class="panel panel-default">
 +
                                    <div class="panel-heading">
 +
                                        <h4 class="panel-title">
 +
                                            <a data-toggle="collapse" data-parent="#accordion" href="#collapseOne">
 +
                                                References
 +
                                            </a>
 +
                                        </h4>
 +
                                    </div>
 +
                                    <div id="collapseOne" class="panel-collapse collapse in">
 +
                                        <div class="panel-body">
 +
                                            Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., … Gorsich, S. W. (2010).
 +
                                            Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae.
 +
                                            Biotechnology for Biofuels, 3, 2. http://doi.org/10.1186/1754-6834-3-2
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                        <div class="col-md-6">
 +
                            <h3 class="text-lowercase ct-fw-600">
 +
                                And they love us.
 +
                            </h3>
 +
       
 +
                            <p>
 +
                                Donec justo mauris, sagittis sed vulputate ut, commodo dapibus massa. Class aptent taciti
 +
                                sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Cras ut mi lacus. Morbi
 +
                                accumsan mauris ac posuere vehicula. Donec bibendum tellus rutrum turpis varius dictum. Maecenas
 +
                                tristique arcu sed rhoncus laoreet. Praesent eget fermentum nisi. Donec ac velit aliquet,
 +
                                bibendum sem in, convallis est. Phasellus sodales ultricies cursus.
 +
                            </p>
 +
       
 +
                            <div class="row">
 +
                                <div class="col-sm-6 ct-u-paddingTop30">
 +
                                    <div class="ct-counterBox ct-counterBox--socials">
 +
                                        <div class="pull-left">
 +
                                            <span class="ct-counterBox-number ct-fw-700 ct-u-colorDarkGray">458</span>
 +
                                        </div>
 +
                                        <h5 class="ct-counterBox-title ct-fw-700 ct-js-color" data-color="3b5998">facebook</h5>
 +
                                        <span class="ct-counterBox-text text-uppercase ct-fw-600 ct-u-colorDarkGray">Likes</span>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="col-sm-6 ct-u-paddingTop30">
 +
                                    <div class="ct-counterBox ct-counterBox--socials">
 +
                                        <div class="pull-left">
 +
                                            <span class="ct-counterBox-number ct-fw-700 ct-u-colorDarkGray">857</span>
 +
                                        </div>
 +
                                        <h5 class="ct-counterBox-title ct-fw-700 ct-js-color" data-color="55acee">twitter</h5>
 +
                                        <span class="ct-counterBox-text text-uppercase ct-fw-600 ct-u-colorDarkGray">Followers</span>
 +
                                    </div>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </section>
 +
 
 +
        </div>
 +
    </section>
  
 
</html>
 
</html>
 +
 +
{{METU_HS_Ankara/footer}}

Revision as of 22:57, 27 September 2018

METU HS IGEM

METUHSIGEM_LOGO

Composite Parts

Composite Part 1:

FucO/ L-1,2-Propanediol Oxidoreductase

FucO is the gene that codes for L-1,2-propanediol oxidoreductase which is a NADH-linked, homodimer enzyme having the role of acting on furfural which is a toxic inhibitor of microbial fermentations causing cell wall and membrane damage, DNA breaks down and reduced enzymatic activities (Zheng, 2013; Liu, Ma & Song, 2009).

The enzyme catalyzes L-lactaldehyde and L-1,2- propanediol while dissimilating fucose in which acetaldehyde, ethylene glycerol, L-lactaldehyde and some more substances are used as substrates. Despite these, it takes an important role in furan reduction to its alcohol derivative (Wang et al., 2011).

Our circuit design for FucO gene

Our circuit consists of prefix, a strong promoter (J23100), RBS (B0034), FucO as protein coding region, double terminator (B0015) and suffix. This part enables our E. coli KO11 strain to convert toxic furfural into furfuryl alcohol. Our construct is inserted into pSB1C3 and delivered to the Registry.

FucO has NADH-dependent furan reductase activity. When furfural is present in the field, the metabolism of furfural by NADPH-dependent oxidoreductases go active in order to reduce it to its less toxic alcohol derivative-furfuryl alcohol (Zheng, 2013; Wang et al., 2013; Allen et al., 2010).

In this metabolism, the expression of oxidoreductases that are NADPH-dependent, such as YqhD, are shown to inhibit the growth and fermentation in E. coli by competing for biosynthesis with NADPH (Zheng, 2013).

Because the native conversion of NADH to NADPH in E. coli is insufficient to revitalize the NADPH pool during fermentation, the actions shouldn’t be interfering with NADPH metabolism (Wang et al., 2011). Thus, the overexpression of plasmid-based NADH-dependent propanediol oxidoreductase (FucO) gene may reduce furfural to ultimately improve furfural resistance without detrimentally affecting the biosynthesis of NADPH (Wang et al., 2011).

Figure 2: The overexpression of FucO and YqhD and relationships with furfural resistance traits, metabolism, and reducing cofactors (Wang et al., 2013).

In order to make our gene compatible with RFC 10, 25 and 1000, we reconstructed the nucleotides to get rid of the restriction sites while protecting the amino acid sequence. We looked through the codon bias property of E. coli and made the nucleotide changes accordingly.

We’ve inserted the FucO composite part to pSB1C3 and pSB1A3 backbones. Then, we’ve transformed the construct for submission, BBa_K2571003, (in pSB1C3) to DH5 alpha; and the other construct, for our biochemical assay, (in pSB1A3) to KO11. As we isolated the plasmids, we’ve done PCR with FucO left and VR primers to test orientation of our parts to the backbone. We expected a band of 754 bp between the FucO left and VR primers and the PCR results confirmed our expectations and showed that our parts were correctly inserted and transformed.

Composite 2:

GSH:Bifunctional gamma-glutamate-cysteine ligase/glutathione synthetase

Glutathione (GSH) is an important antioxidant that has a sulfur compound; a tripeptide composed of three amino acids (cysteine, glycine and glutamic acid) and a non-protein thiol (Pizzorno, 2014; Lu, 2013). GSH is generally found in the thiol-reduced from which is crucial for detoxification of ROS and free radicals which cause oxidative stress (Lu, 2013; Burton & Jauniaux, 2011).

Reactive Oxygen Species are dangerous substances that distort protein based matters by taking electrons (Lu, 2013). The chemical structure of the protein-based substances are altered and become dysfunctional because of ROS (Lu, 2013; Burton & Jauniaux, 2011).

Furthermore, one of the most significant protein-based substance, DNA get attacked by OH radicals (Burton & Jauniaux, 2011). However, the reduced form GSH can protect the chemical structure of the proteins by giving extra electrons to the ROS and free radicals (Lu, 2013). This is accomplished by GSH peroxidase-catalyzed reactions (Lu, 2013).

In order to make our gene compatible with RFC 10, 25 and 1000, we reconstructed the nucleotides to get rid of the restriction sites while protecting the amino acid sequence. We looked through the codon bias property of E.coli and made the nucleotide changes accordingly.

Our circuit design for GSH gene

Our circuit consists of prefix, a strong promoter (J23100), RBS (B0034), GSH as A protein coding region, double terminator (B0015) and suffix. This part enables our E. coli KO11 strain to overexpress Oxidised Glutathione to reduce oxidative stress, increasing its lifespan. (Lu, 2013) Our construct is inserted into pSB1C3 and delivered to the Registry.

Composite 2 (GSH) PCR Results With The Primers GSH Left and GSH Right:

We’ve inserted the GSH composite part to pSB1C3 backbone. Then, we’ve transformed the construct for submission, BBa_K2571005, (in pSB1C3) to DH5 alpha and conducted colony PCR. We’ve made the PCR with GSH specific primers and expected to see a result of 225bp. By showing the band we expected, 225bp, PCR confirmation for our insertion proved right.

Composite 3:

Dual Expression of FucO and GSH

The first protein coding region we have, placed after the RBS, FucO, will code for L-1,2-propanediol oxidoreductase (a homodimer enzyme) in order to act upon furfural presence in the field (Zheng, 2013). The metabolism of furfural by NAD(P)H-dependent oxidoreductases will reduce the toxicity of the chemical by turning it into furfuryl alcohol, a derivative and increase the furfural tolerance (Zheng, 2013; Wang et al., 2013; Allen et al., 2010). Our second protein coding region, bifunctional gamma-glutamate-cysteine ligase/glutathione synthetase (GSH), is a non-protein thiol group and a tripeptide composed of cysteine, glycine and glutamic acid (Lu, 2013). It is crucial for the detoxification of reactive oxygen species and free radicals (Ask et al, 2013). Reactive oxygen species (ROS) are harmful substances that alter protein based matters by taking electrons (Lu, 2013; Burton & Jauniaux, 2011). Because many benefits of GSH include scavenging of ROS, protection against endogenous toxic metabolites and detoxification of xenobiotics, we choose this gene to entagrate with the FucO (Höck et al., 2013). Thus we constructed multi functional gene providing long life span and resistance.

Design Notes of Dual Expression of FucO and GSH

Our construct for composite part 3 is composed of two stages, first the reduction of furans (specifically furfural and 5-HMF) and second the detoxification of reactive oxygen species (ROS). Our first composite part, fucO gene coding for L-1,2-propanediol oxidoreductase along with the promoter J23100, RBS B0034 and double terminator B0034, is NADH-dependent, which highly benefits to the construct of our project. Our construct is inserted into pSB1C3 and delivered to the Registry.

As fucO is NADH-dependent it outperforms other oxidoreductases, by not interfering with the NADPH metabolism of the organism while converting highly toxic substances, furfural and 5-HMF to non-harmful alcohols. This characteristic of fucO is crucial because the expression of oxidoreductases like Yqhd are NADPH-dependent, hence they compete with the biosynthesis for NADPH, which results in inhibiting the growth of the organism.

Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., … Gorsich, S. W. (2010). Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnology for Biofuels, 3, 2. http://doi.org/10.1186/1754-6834-3-2

And they love us.

Donec justo mauris, sagittis sed vulputate ut, commodo dapibus massa. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Cras ut mi lacus. Morbi accumsan mauris ac posuere vehicula. Donec bibendum tellus rutrum turpis varius dictum. Maecenas tristique arcu sed rhoncus laoreet. Praesent eget fermentum nisi. Donec ac velit aliquet, bibendum sem in, convallis est. Phasellus sodales ultricies cursus.

458
facebook
Likes
857
twitter
Followers