Difference between revisions of "Team:METU HS Ankara/Basic Part"

Line 7: Line 7:
 
                 <div class="col-md-12">
 
                 <div class="col-md-12">
 
                     <h1 class="text-capitalize ct-fw-600 ct-u-colorWhite">
 
                     <h1 class="text-capitalize ct-fw-600 ct-u-colorWhite">
                         Composite Parts
+
                         Basic Parts
 
                     </h1>
 
                     </h1>
 
                 </div>
 
                 </div>
Line 29: Line 29:
 
                 <tbody>
 
                 <tbody>
 
                 <tr class="danger">
 
                 <tr class="danger">
                     <td><a href="">BBa_K2571003</a></td>
+
                     <td><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571000">BBa_K2571000</a></td>
 
                     <td><img width="80" src="https://static.igem.org/mediawiki/2018/b/b5/T--METU_HS_Ankara--cparts01.jpg" /></td>
 
                     <td><img width="80" src="https://static.igem.org/mediawiki/2018/b/b5/T--METU_HS_Ankara--cparts01.jpg" /></td>
                     <td>FucO / L-1,2-propanediol oxidoreductase</td>
+
                     <td>FucO /L-1,2-propanediol oxidoreductase</td>
 
                     <td>Tugba Inanc & Ceyhun Kayihan</td>
 
                     <td>Tugba Inanc & Ceyhun Kayihan</td>
                     <td>1350bp</td>
+
                     <td>1152bp</td>
 
                 </tr>
 
                 </tr>
 
                 <tr class="warning" style="font-size: 17px">
 
                 <tr class="warning" style="font-size: 17px">
                     <td><a href="">BBa_K2571005</a></td>
+
                     <td><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571001">BBa_K2571001</a></td>
 
                     <td><img width="80" src="https://static.igem.org/mediawiki/2018/b/b5/T--METU_HS_Ankara--cparts01.jpg" /></td>
 
                     <td><img width="80" src="https://static.igem.org/mediawiki/2018/b/b5/T--METU_HS_Ankara--cparts01.jpg" /></td>
                     <td>GSH/ Bifunctional gamma-glutamate-cysteine ligase/Glutathione synthetase</td>
+
                     <td>Bifunctional gamma-glutamate-cysteine ligase/Glutathione synthetase</td>
 
                     <td>Tugba Inanc & Ceyhun Kayihan</td>
 
                     <td>Tugba Inanc & Ceyhun Kayihan</td>
                     <td>2466bp</td>
+
                     <td>2268bp</td>
                </tr>
+
                <tr class="info">
+
                    <td><a href="">BBa_K2571006</a></td>
+
                    <td><img width="80" src="https://static.igem.org/mediawiki/2018/b/b5/T--METU_HS_Ankara--cparts01.jpg" /></td>
+
                    <td>Dual Expression of FucO and GSH</td>
+
                    <td>Tugba Inanc & Ceyhun Kayihan</td>
+
                    <td>3644bp</td>
+
 
                 </tr>
 
                 </tr>
 
                 </tbody>
 
                 </tbody>
 
             </table>
 
             </table>
  
             <h3>Composite Part 1:</h3>
+
             <h3>FucO <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571000">(BBa_K2571000)</a></h3>
            <h4>FucO/ L-1,2-Propanediol Oxidoreductase</h4>
+
           
 
             <p>
 
             <p>
                 FucO is the gene that codes for L-1,2-propanediol oxidoreductase which is a NADH-linked, homodimer enzyme having the role of  
+
                 FucO is a protein-coding region that codes for L-1,2-propanediol oxidoreductase which is an NADH-linked, homodimer enzyme  
                acting on furfural which is a toxic inhibitor of microbial fermentations causing cell wall and membrane damage, DNA breakdowns  
+
                having the role of acting on furfural. Furfural is a highly toxic substance which inhibits  is a toxic inhibitor of microbial  
                and reduced enzymatic activities (Zheng, 2013; Liu, Ma & Song, 2009).
+
                fermentations causing cell wall and membrane damages, DNA breakdowns, DNA cleavages and reduced enzymatic activities  
 +
                (Zheng, 2013; Liu, Ma & Song, 2009).
 
             </p>
 
             </p>
  
 
             <p>
 
             <p>
                 The enzyme catalyzes L-lactaldehyde and L-1,2- propanediol while dissimilating fucose in which acetaldehyde, ethylene glycerol,  
+
                 In the presence of furfural, NADPH-dependent oxidoreductases goes active in order to reduce furfural into its less toxic alcohol
                 L-lactaldehyde and some more substances are used as substrates. Despite these, it takes an important role in furan reduction
+
                derivative - furfuryl alcohol (Zheng, 2013; Wang et al., 2013; Allen et al., 2010). In this pathway, the expression of oxidoreductases
                 to its alcohol derivative (Wang et al., 2011).
+
                 that are NADPH-dependent, such as YqhD, are shown to inhibit the growth and fermentation in E. coli by competing with biosynthesis for
 +
                 NADPH (Zheng, 2013).
 
             </p>
 
             </p>
  
            <img src="https://static.igem.org/mediawiki/2018/7/70/T--METU_HS_Ankara--cparts06.jpg" />
 
 
            <h5>Our circuit design for FucO gene</h5>
 
 
             <p>
 
             <p>
                 Our circuit consists of prefix, a strong promoter (J23100), RBS (B0034), FucO as protein coding region, double terminator (B0015)
+
                 Because the native conversion of NADH to NADPH in E. coli is insufficient to revitalize the NADPH pool during fermentation, the actions
                 and suffix. This part enables our E. coli KO11 strain to convert toxic furfural into furfuryl alcohol. Our construct was inserted
+
                shouldn’t be interfering with NADPH metabolism (Wang et al, 2011). Thus, the overexpression of plasmid-based NADH-dependent propanediol
                 into pSB1C3 and delivered to the Registry.
+
                 oxidoreductase (FucO) gene reduces furfural to ultimately improve furfural resistance without detrimentally affecting the biosynthesis
 +
                 of NADPH (Wang et al, 2011).
 
             </p>
 
             </p>
  
             <img src="https://static.igem.org/mediawiki/2018/0/03/T--METU_HS_Ankara--cparts02.jpg" />
+
             <img src="https://static.igem.org/mediawiki/2018/c/c5/T--METU_HS_Ankara--bparts01.jpg" />
 
             <br />
 
             <br />
 
             <i style="font-size: 12px">
 
             <i style="font-size: 12px">
                 Figure 1: Circuit design of Composite part 1 with FucO gene. <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571003">BBa_K2571003.</a>  
+
                 Figure 1: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571000">BBa_K2571000</a>: fucO was cloned into pSB1C3.  
                Our construct includes a strong promoter,  RBS, Fuco and double terminator.  
+
 
             </i>
 
             </i>
  
             <p>
+
             <img src="https://static.igem.org/mediawiki/2018/6/67/T--METU_HS_Ankara--bparts02.jpg" />
                    In order to make our gene compatible with RFC 10, 25 and 1000, we reconstructed the nucleotides to get rid of the restriction sites while protecting
+
                    the amino acid sequence. We looked through the codon bias property of E. coli and made the nucleotide changes accordingly.  
+
            </p>
+
  
 
             <p>
 
             <p>
                 FucO has NADH-dependent furan reductase activity. When furfural is present in the field, the metabolism of furfural by NADPH-dependent oxidoreductases
+
                 We’ve inserted the gene our FucO, which is our basic part 1,to pSB1C3 backbone and transformed it to DH5- alpha. After plasmid
                goes active in order to reduce it to its less toxic alcohol derivative-furfuryl alcohol (Zheng, 2013; Wang et al., 2013; Allen et al., 2010).  
+
                isolation, we’ve checked the orientation with FucO left and VR primers and expected to see a band of 625 bp.  
 
             </p>
 
             </p>
            <img src="https://static.igem.org/mediawiki/2018/0/0c/T--METU_HS_Ankara--cparts0121566415.jpg" />
 
            <br>
 
            <i style="font-size: 12px">
 
                Figure 2: Effect of FucO overexpression in LY180 (Wang et al., 2011). The Cell Mass was observed in furfural containing medium. The FucO gene expressing
 
                L-1,2-propanediol oxidoreductase reduces the effect of furfural. The specific death rate of normal bacteria is observed to be bigger than the specific
 
                death rate of bacteria with FucO gene. Thus, FucO is shown to increase the tolerance and lifespan of bacteria.
 
            </i>
 
  
 
             <p>
 
             <p>
                 In this metabolism, the expression of oxidoreductases that are NADPH-dependent, such as YqhD, are shown to inhibit the growth and fermentation in E. coli
+
                 FucO and VR primers are as below:<br>
                 by competing for biosynthesis with NADPH (Zheng, 2013).
+
                FucO left: GTGATAAGGATGCCGGAGAA<br>
 +
                 VR: ATTACCGCCTTTGAGTGAGC
 
             </p>
 
             </p>
  
             <img src="https://static.igem.org/mediawiki/2018/9/9d/T--METU_HS_Ankara--cparts04.jpg" />
+
             <h3>GSH <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571001">(BBa_K2571001)</a></h3>
            <br>
+
            <i style="font-size: 12px">
+
                Figure 3: The overexpression of FucO and YqhD and relationships with furfural resistance traits, metabolism, and reducing cofactors (Wang et al., 2013).
+
            </i>
+
  
 
             <p>
 
             <p>
                 Because the native conversion of NADH to NADPH in E. coli is insufficient to revitalize the NADPH pool during fermentation, the actions shouldn’t be
+
                 GSH as is a protein-coding region that codes for Bifunctional gamma glutamate cysteine ligase/ Glutathione synthetase.
                interfering with NADPH metabolism (Wang et al., 2011). Thus, the overexpression of plasmid-based NADH-dependent propanediol oxidoreductase (FucO) gene
+
                reduces furfural to ultimately improve furfural resistance without detrimentally affecting the biosynthesis of NADPH (Wang et al., 2011).
+
 
             </p>
 
             </p>
 
            <img width="500" src="https://static.igem.org/mediawiki/2018/b/be/T--METU_HS_Ankara--cparts05.gif" />
 
            <br>
 
            <i style="font-size: 12px; margin-bottom: 20px">
 
                Figure 4: 3D protein structure of L-1,2-propanediol oxidoreductase
 
            </i>
 
 
            <br>
 
 
            <div class="col-md-6" style="margin-bottom: 30px">
 
                <img width="500" src="https://static.igem.org/mediawiki/2018/f/f1/T--METU_HS_Ankara--cparts07.jpg" />
 
                <br>
 
                <i style="font-size: 12px; line-height: 0px !important">
 
                    Figure 5: BBa_K2571003 check with FucO left and VR primers. Expected band length: 754 bp. Last three wells show positive results.
 
                </i>
 
            </div>
 
 
            <div class="col-md-6">
 
                <p>
 
                    We’ve inserted the FucO composite part to pSB1C3 and pSB1A3 backbones. Then, we’ve transformed the construct for submission,
 
                    <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571003">BBa_K2571003</a>, (in pSB1C3)
 
                    to DH5⍺; and the other construct, for our biochemical assay, (in pSB1A3) to KO11. As we isolated the plasmids, we’ve done PCR with FucO left and VR
 
                    primers to test orientation of our parts to the backbone. We expected a band of 754 bp between the FucO left and VR primers and the PCR results confirmed
 
                    our expectations and showed that our parts were correctly inserted and transformed.
 
                </p>
 
            </div>
 
 
            <div style="clear: both"></div>
 
  
 
             <p>
 
             <p>
                 VF2 and VR primers are as below:
+
                 Glutathione (GSH) is known to be an important antioxidant that is a sulfur compound; a tripeptide composed of three amino acids
                 <br >
+
                 (cysteine, glycine and glutamic acid) and a non-protein thiol (Pizzorno, 2014; Lu, 2013). GHS is, furthermore, found in thiol-reduced
                 FucO left: GTGATAAGGATGCCGGAGAA
+
                 form which accounts for its strength as an antioxidant.
                <br >
+
                VR: ATTACCGCCTTTGAGTGAGC
+
 
                      
 
                      
 
             </p>
 
             </p>
 
            <h3>Composite 2:</h3>
 
            <h4>GSH:Bifunctional gamma-glutamate-cysteine ligase/glutathione synthetase</h4>
 
  
 
             <p>
 
             <p>
                 Reactive Oxygen Species (ROS) are dangerous substances that distort protein based matters by taking electrons (Lu, 2013). The chemical structure of the protein-based  
+
                 Reactive oxygen species (ROS) are harmful substances that distort protein based matters by taking electrons and also causes oxidative
                 substances are altered and become dysfunctional because of ROS (Lu, 2013; Burton & Jauniaux, 2011).
+
                stress (Lu, 2013) which occur during the fermentation process and is another major setback. The chemical structure of the protein-based  
 +
                 substances such as the DNA are altered and become therefore become  dysfunctional because of ROS (Lu, 2013; Burton & Jauniaux, 2011).
 
             </p>
 
             </p>
  
 
             <p>
 
             <p>
                 Furthermore, one of the most significant protein-based substance, DNA, gets attacked by OH radicals (Burton & Jauniaux, 2011). However, the reduced form GSH can protect
+
                 GSH is generally found in the thiol-reduced form which is crucial for detoxification of ROS and free radicals. which cause oxidative
                the chemical structure of the proteins by giving extra electrons to the ROS and free radicals (Lu, 2013). This is accomplished by GSH peroxidase-catalyzed reactions
+
                 stress. (Lu, 2013; Burton & Jauniaux, 2011).
                 (Lu, 2013).
+
 
             </p>
 
             </p>
 
            <img src="https://static.igem.org/mediawiki/2018/7/70/T--METU_HS_Ankara--cparts0121566.jpg" />
 
 
            <img width="500" src="https://static.igem.org/mediawiki/2018/c/cd/T--METU_HS_Ankara--cparts08.gif" />
 
            <br>
 
            <i style="font-size: 12px">
 
                Figure 6: 3D protein structure of Bifunctional gamma-glutamate-cysteine ligase
 
            </i>
 
 
            <h5>Our circuit design for GSH gene</h5>
 
  
 
             <p>
 
             <p>
                 Our circuit consists of prefix, a strong promoter (J23100), RBS (B0034), GSH as protein coding region, double terminator (B0015) and suffix. This part enables our E.
+
                 Antioxidants like GSH play an important role in the detoxification of ROS and reactive oxygen species by directly acting as electron
                 coli KO11 strain to overexpress oxidised Glutathione to reduce oxidative stress, increasing its lifespan. (Lu, 2013) Our construct is inserted into pSB1C3 and
+
                 donors;, changing the unbalanced electron state of the free radicals and turningand, turning them into less harmful substances or affect
                 delivered to the Registry.
+
                 them indirectly by getting in the way of the expression of free radical generating enzymes (Lü et al., 2014).
 
             </p>
 
             </p>
  
             <img src="https://static.igem.org/mediawiki/2018/b/b4/T--METU_HS_Ankara--cparts09.jpg" />
+
             <img src="https://static.igem.org/mediawiki/2018/6/62/T--METU_HS_Ankara--bparts03.jpg" />
 
             <br>
 
             <br>
             <i style="font-size: 12px">
+
             <i style="font-size: 12px; margin-bottom: 20px">
                 Figure 7: Circuit design of Composite part 2 with GSH gene. <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571005">BBa_K2571005</a>. Our construct
+
                 Figure 3:<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571001">BBa_K2571001</a>: GSH was cloned into pSB1C3.
                includes a strong promoter,  RBS, GSH and double terminator.  
+
 
             </i>
 
             </i>
  
             <p>
+
             <div class="col-md-6" style="margin-bottom: 30px">
                In order to make our gene compatible with RFC 10, 25 and 1000, we reconstructed the nucleotides to get rid of the restriction sites while protecting the amino acid
+
                 <img width="500" src="https://static.igem.org/mediawiki/2018/6/6e/T--METU_HS_Ankara--bparts04.jpg" />
                sequence. We looked through the codon bias property of E.coli and made the nucleotide changes accordingly.
+
            </p>
+
 
+
            <img src="https://static.igem.org/mediawiki/2018/8/87/T--METU_HS_Ankara--cparts012566.jpg" />
+
            <br>
+
            <i style="font-size: 12px">
+
                 Figure 8: Because Glutathione prevents the ROS from harming the bacteria, in high glutathione concentration increase in cell mass was observed. In brief, when
+
                glutathione concentration increases, the specific cell growth rate also increases and we observe increase in number of bacteria compared to the bacteria without
+
                GSH gene (Kim & Hahn , 2013). 
+
            </i>
+
 
+
            <div class="col-md-6">
+
                <img src="https://static.igem.org/mediawiki/2018/9/9d/T--METU_HS_Ankara--cparts01256eeie6.jpg" />
+
 
                 <br>
 
                 <br>
                 <i style="font-size: 12px">
+
                 <i style="font-size: 12px; line-height: 0px !important">
                     Figure 9: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571005">BBa_K2571005</a> check with GSH specific primers. Expected band length: 225 bp.  
+
                     Figure 4: BBa_K2571001 check with GSH specific primers. Expected band length: 225 bp. GSH basic well show positive results.  
                    Last six wells show positive results.
+
 
                 </i>
 
                 </i>
 
             </div>
 
             </div>
Line 214: Line 133:
 
             <div class="col-md-6">
 
             <div class="col-md-6">
 
                 <p>
 
                 <p>
                     We’ve inserted the GSH composite part to pSB1C3 backbone. Then, we’ve transformed the construct for submission,
+
                     We’ve inserted the geneour GSH, basic part 2, to pSB1C3 backbone and transformed it to DH5 alpha. After plasmid isolation,  
                    <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571005">BBa_K2571005</a>, (in pSB1C3)
+
                     we’ve checked the orientation with GSH specific primers and expected to see a band of 225 bp.
                     to Dh4 alpha and conducted colony PCR. We’ve made the PCR with GSH specific primers and expected to see a result of 225bp. By showing the
+
                    band we expected, 225bp, PCR confirmation for our insertion proved right.
+
 
                 </p>
 
                 </p>
 
             </div>
 
             </div>
  
 
             <div style="clear: both"></div>
 
             <div style="clear: both"></div>
 +
 
             <p>
 
             <p>
 
                 GSH left and right primers are shown as below:
 
                 GSH left and right primers are shown as below:
                 <br >
+
                 <br>
                 GSH left: TCGGAGGCTAAAACTCAGGA
+
                 GSH left: TCGGAGGCTAAAACTCAGGA  
                 <br >
+
                 <br>
 
                 GSH right: GTGGGCAGTCCAGTCGTAAT
 
                 GSH right: GTGGGCAGTCCAGTCGTAAT
            </p>
 
 
            <h3>Composite 3:</h3>
 
            <h4>Dual Expression of FucO and GSH</h4>
 
 
            <p>
 
                The first protein coding region we have, placed after the RBS, FucO, will code for L-1,2-propanediol oxidoreductase (a homodimer enzyme)
 
                in order to act upon furfural presence in the field (Zheng, 2013). The metabolism of furfural by NAD(P)H-dependent oxidoreductases will
 
                reduce the toxicity of the chemical by turning it into furfuryl alcohol, a derivative and increase the furfural tolerance (Zheng, 2013;
 
                Wang et al., 2013; Allen et al., 2010). Our second protein coding region, bifunctional gamma-glutamate-cysteine ligase/glutathione
 
                synthetase (GSH), is a non-protein thiol group and a tripeptide composed of cysteine, glycine and glutamic acid (Lu, 2013). It is crucial
 
                for the detoxification of reactive oxygen species and free radicals (Ask et al, 2013). Reactive oxygen species (ROS) are harmful substances
 
                that alter protein based matters by taking electrons (Lu, 2013; Burton & Jauniaux, 2011). Because many benefits of GSH include scavenging
 
                of ROS, protection against endogenous toxic metabolites and detoxification of xenobiotics, we choose this gene to entagrate with the FucO
 
                (Höck et al., 2013). Thus we constructed multi functional gene providing long life span and resistance.
 
            </p>
 
 
            <h4>Design Notes of Dual Expression of FucO and GSH <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571006">(BBa_K2571006)</a></h4>
 
 
            <p>
 
                Our construct for composite part 3 is composed of two stages, first the reduction of furans (specifically furfural and 5-HMF)  and second the
 
                detoxification of reactive oxygen species (ROS).-To achieve this effect, we designed our composite 3 part as with a prefix, a strong promoter
 
                (J23100), RBS (B0034), fucO as the first protein coding region <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571003">(BBa_K2571003)</a>,
 
                RBS (B0034), GSH as the second protein coding region <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571005">(BBa_K2571005)</a>,
 
                double terminator (B0015) and suffix.
 
            </p>
 
 
            <img src="https://static.igem.org/mediawiki/2018/d/dc/T--METU_HS_Ankara--cparts01256eie6.jpg" />
 
            <br>
 
            <i style="font-size: 12px">
 
                Figure 10: Circuit design of Composite part 3 with FucO and GSH genes. <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571006">BBa_K2571006</a>.
 
                Our construct includes a strong promoter, RBS, FucO, RBS, GSH and double terminator.
 
            </i>
 
 
            <p>
 
                Our construct is inserted into pSB1C3 and delivered to the Registry. Our construct is also inserted into pSB1A3 and transferred into KO11 to
 
                conduct further biochemical assays.
 
            </p>
 
 
            <p>
 
                Given that fucO is NADH-dependent it outperforms other oxidoreductases, by not interfering with the NADPH metabolism of the organism while converting highly
 
                toxic substances, furfural and 5-HMF to non-harmful alcohols. This characteristic of fucO is crucial because the expression of oxidoreductases like Yqhd are
 
                NADPH-dependent, hence they compete with the biosynthesis for NADPH, which results in inhibiting the growth of the organism.
 
            </p>
 
 
            <p>
 
                Glutathione, on the other hand, is recycled using NAD(P)H pathways and since now it will be overexpressed and with NADH metabolism is not being altered thanks
 
                to FucO, antioxidant capacity of the cell will be increased dramatically, result in amplified immunity to both furans and ROS, habilitating cell growth,
 
                increasing ethanol yield by the virtue of increasing cell mass and reproduction, and improved metabolism.
 
 
             </p>
 
             </p>
  

Revision as of 22:30, 1 October 2018

METU HS IGEM

METUHSIGEM_LOGO

Basic Parts

Name Type Description Designer Length
BBa_K2571000 FucO /L-1,2-propanediol oxidoreductase Tugba Inanc & Ceyhun Kayihan 1152bp
BBa_K2571001 Bifunctional gamma-glutamate-cysteine ligase/Glutathione synthetase Tugba Inanc & Ceyhun Kayihan 2268bp

FucO (BBa_K2571000)

FucO is a protein-coding region that codes for L-1,2-propanediol oxidoreductase which is an NADH-linked, homodimer enzyme having the role of acting on furfural. Furfural is a highly toxic substance which inhibits is a toxic inhibitor of microbial fermentations causing cell wall and membrane damages, DNA breakdowns, DNA cleavages and reduced enzymatic activities (Zheng, 2013; Liu, Ma & Song, 2009).

In the presence of furfural, NADPH-dependent oxidoreductases goes active in order to reduce furfural into its less toxic alcohol derivative - furfuryl alcohol (Zheng, 2013; Wang et al., 2013; Allen et al., 2010). In this pathway, the expression of oxidoreductases that are NADPH-dependent, such as YqhD, are shown to inhibit the growth and fermentation in E. coli by competing with biosynthesis for NADPH (Zheng, 2013).

Because the native conversion of NADH to NADPH in E. coli is insufficient to revitalize the NADPH pool during fermentation, the actions shouldn’t be interfering with NADPH metabolism (Wang et al, 2011). Thus, the overexpression of plasmid-based NADH-dependent propanediol oxidoreductase (FucO) gene reduces furfural to ultimately improve furfural resistance without detrimentally affecting the biosynthesis of NADPH (Wang et al, 2011).


Figure 1: BBa_K2571000: fucO was cloned into pSB1C3.

We’ve inserted the gene our FucO, which is our basic part 1,to pSB1C3 backbone and transformed it to DH5- alpha. After plasmid isolation, we’ve checked the orientation with FucO left and VR primers and expected to see a band of 625 bp.

FucO and VR primers are as below:
FucO left: GTGATAAGGATGCCGGAGAA
VR: ATTACCGCCTTTGAGTGAGC

GSH (BBa_K2571001)

GSH as is a protein-coding region that codes for Bifunctional gamma glutamate cysteine ligase/ Glutathione synthetase.

Glutathione (GSH) is known to be an important antioxidant that is a sulfur compound; a tripeptide composed of three amino acids (cysteine, glycine and glutamic acid) and a non-protein thiol (Pizzorno, 2014; Lu, 2013). GHS is, furthermore, found in thiol-reduced form which accounts for its strength as an antioxidant.

Reactive oxygen species (ROS) are harmful substances that distort protein based matters by taking electrons and also causes oxidative stress (Lu, 2013) which occur during the fermentation process and is another major setback. The chemical structure of the protein-based substances such as the DNA are altered and become therefore become dysfunctional because of ROS (Lu, 2013; Burton & Jauniaux, 2011).

GSH is generally found in the thiol-reduced form which is crucial for detoxification of ROS and free radicals. which cause oxidative stress. (Lu, 2013; Burton & Jauniaux, 2011).

Antioxidants like GSH play an important role in the detoxification of ROS and reactive oxygen species by directly acting as electron donors;, changing the unbalanced electron state of the free radicals and turningand, turning them into less harmful substances or affect them indirectly by getting in the way of the expression of free radical generating enzymes (Lü et al., 2014).


Figure 3:BBa_K2571001: GSH was cloned into pSB1C3.

Figure 4: BBa_K2571001 check with GSH specific primers. Expected band length: 225 bp. GSH basic well show positive results.

We’ve inserted the geneour GSH, basic part 2, to pSB1C3 backbone and transformed it to DH5 alpha. After plasmid isolation, we’ve checked the orientation with GSH specific primers and expected to see a band of 225 bp.

GSH left and right primers are shown as below:
GSH left: TCGGAGGCTAAAACTCAGGA
GSH right: GTGGGCAGTCCAGTCGTAAT

  • Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., … Gorsich, S. W. (2010). Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnology for Biofuels, 3, 2. http://doi.org/10.1186/1754-6834-3-2