Difference between revisions of "Team:METU HS Ankara/Part Collection"

(Prototype team page)
 
Line 1: Line 1:
{{METU_HS_Ankara}}
+
{{METU_HS_Ankara/Inner_Header}}
 
<html>
 
<html>
  
 +
    <header class="ct-pageHeader ct-pageHeader--type2 ct-u-shadowBottom--type2 ct-pageHeader--motive ct-pageHeader--hasDescription ct-u-paddingBoth10">
 +
        <div class="container ct-u-triangleBottomLeft">
 +
            <div class="row">
 +
                <div class="col-md-12">
 +
                    <h1 class="text-capitalize ct-fw-600 ct-u-colorWhite">
 +
                        Basic Parts
 +
                    </h1>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </header>
  
 +
    <section class="ct-u-paddingBoth50">
 +
        <div class="container">
 +
            <img src="https://static.igem.org/mediawiki/2018/7/72/T--METU_HS_Ankara--partsbanner.jpg" />
 +
            <table class="table" style="font-size: 17px">
 +
                <thead>
 +
                <tr>
 +
                    <th>Name</th>
 +
                    <th>Type</th>
 +
                    <th>Description</th>
 +
                    <th>Designer</th>
 +
                    <th>Length</th>
 +
                </tr>
 +
                </thead>
 +
                <tbody>
 +
                <tr class="danger">
 +
                    <td><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571000">BBa_K2571000</a></td>
 +
                    <td><img width="80" src="https://static.igem.org/mediawiki/2018/b/b5/T--METU_HS_Ankara--cparts01.jpg" /></td>
 +
                    <td>FucO /L-1,2-propanediol oxidoreductase</td>
 +
                    <td>Tugba Inanc & Ceyhun Kayihan</td>
 +
                    <td>1152bp</td>
 +
                </tr>
 +
                <tr class="warning" style="font-size: 17px">
 +
                    <td><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571001">BBa_K2571001</a></td>
 +
                    <td><img width="80" src="https://static.igem.org/mediawiki/2018/b/b5/T--METU_HS_Ankara--cparts01.jpg" /></td>
 +
                    <td>Bifunctional gamma-glutamate-cysteine ligase/Glutathione synthetase</td>
 +
                    <td>Tugba Inanc & Ceyhun Kayihan</td>
 +
                    <td>2268bp</td>
 +
                </tr>
 +
                </tbody>
 +
            </table>
  
<div class="column full_size judges-will-not-evaluate">
+
            <h3>FucO <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571000">(BBa_K2571000)</a></h3>
<h3>★  ALERT! </h3>
+
           
<p>This page is used by the judges to evaluate your team for the <a href="https://2018.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2018.igem.org/Judging/Awards"> award listed below</a>. </p>
+
            <p>
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2018.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
                FucO is a protein-coding region that codes for L-1,2-propanediol oxidoreductase which is an NADH-linked, homodimer enzyme
</div>
+
                having the role of acting on furfural. Furfural is a highly toxic substance which inhibits  is a toxic inhibitor of microbial
 +
                fermentations causing cell wall and membrane damages, DNA breakdowns, DNA cleavages and reduced enzymatic activities
 +
                (Zheng, 2013; Liu, Ma & Song, 2009).
 +
            </p>
  
 +
            <p>
 +
                In the presence of furfural, NADPH-dependent oxidoreductases goes active in order to reduce furfural into its less toxic alcohol
 +
                derivative - furfuryl alcohol (Zheng, 2013; Wang et al., 2013; Allen et al., 2010). In this pathway, the expression of oxidoreductases
 +
                that are NADPH-dependent, such as YqhD, are shown to inhibit the growth and fermentation in E. coli by competing with biosynthesis for
 +
                NADPH (Zheng, 2013).
 +
            </p>
  
<div class="clear"></div>
+
            <p>
 +
                Because the native conversion of NADH to NADPH in E. coli is insufficient to revitalize the NADPH pool during fermentation, the actions
 +
                shouldn’t be interfering with NADPH metabolism (Wang et al, 2011). Thus, the overexpression of plasmid-based NADH-dependent propanediol
 +
                oxidoreductase (FucO) gene reduces furfural to ultimately improve furfural resistance without detrimentally affecting the biosynthesis
 +
                of NADPH (Wang et al, 2011).
 +
            </p>
  
 +
            <div class="col-md-12 parts-photo-box">
 +
                <img src="https://static.igem.org/mediawiki/2018/c/c5/T--METU_HS_Ankara--bparts01.jpg" />
 +
                <br />
 +
                <i class="parts-info">
 +
                    Figure 1: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571000">BBa_K2571000</a>: fucO was cloned into pSB1C3.
 +
                </i>
 +
            </div>
  
 +
            <div style="clear: both"></div>
  
 +
            <div class="col-md-6">
 +
                <img width="500" src="https://static.igem.org/mediawiki/2018/6/67/T--METU_HS_Ankara--bparts02.jpg" />
 +
            </div>
  
<div class="column full_size">
+
            <div class="col-md-6">
 +
                <p>
 +
                    We’ve inserted the gene our FucO, which is our basic part 1,to pSB1C3 backbone and transformed it to DH5- alpha. After plasmid
 +
                    isolation, we’ve checked the orientation with FucO left and VR primers and expected to see a band of 625 bp.
 +
                </p>
 +
            </div>
  
<h1> Part Collection </h1>
+
            <div style="clear: both"></div>
<p>Did your team make a lot of great parts? Is there a theme that ties all your parts together? Do you have more than 10 parts in this collection? Did you make a CRISPR collection, a MoClo collection, or a collection of awesome pigment parts? Describe your parts collection on this page, so the judges can evaluate you for the Best Part Collection award.</p>
+
  
<p>
+
            <p>
While you should put all the characterization information for your parts on the Registry, you are encouraged to explain how all your parts form a collection on this page.
+
                FucO and VR primers are as below:<br>
</p>
+
                FucO left: GTGATAAGGATGCCGGAGAA<br>
</div>
+
                VR: ATTACCGCCTTTGAGTGAGC
 +
            </p>
  
 +
            <h3>GSH <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571001">(BBa_K2571001)</a></h3>
  
<div class="column full_size">
+
            <p>
<div class="highlight decoration_background">
+
                GSH as is a protein-coding region that codes for Bifunctional gamma glutamate cysteine ligase/ Glutathione synthetase.
<h3>Note</h3>
+
            </p>
<p>This page should list all the parts in the collection your team made during your project. You must add all characterization information for your parts on the Registry. You should not put characterization information on this page.</p>
+
</div>
+
</div>
+
  
<div class="column full_size">
+
            <p>
<h3>Best Part Collection Special Prize</h3>
+
                Glutathione (GSH) is known to be an important antioxidant that is a sulfur compound; a tripeptide composed of three amino acids
<p>To be eligible for this award, these parts must adhere to <a href="http://parts.igem.org/DNA_Submission">Registry sample submission guidelines</a> and have been sent to the Registry of Standard Biological Parts. If you have a collection of parts you wish to nominate your team for this <a href="https://2018.igem.org/Judging/Awards">special prize</a>, make sure you add your part numbers to your <a href="https://2018.igem.org/Judging/Judging_Form">judging form</a> and delete the box at the top of this page.</p>
+
                (cysteine, glycine and glutamic acid) and a non-protein thiol (Pizzorno, 2014; Lu, 2013). GHS is, furthermore, found in thiol-reduced
</div>
+
                form which accounts for its strength as an antioxidant.
 +
                   
 +
            </p>
 +
 
 +
            <p>
 +
                Reactive oxygen species (ROS) are harmful substances that distort protein based matters by taking electrons and also causes oxidative
 +
                stress (Lu, 2013) which occur during the fermentation process and is another major setback. The chemical structure of the protein-based
 +
                substances such as the DNA are altered and become therefore become  dysfunctional because of ROS (Lu, 2013; Burton & Jauniaux, 2011).
 +
            </p>
 +
 
 +
            <p>
 +
                GSH is generally found in the thiol-reduced form which is crucial for detoxification of ROS and free radicals. which cause oxidative
 +
                stress. (Lu, 2013; Burton & Jauniaux, 2011).
 +
            </p>
 +
 
 +
            <p>
 +
                Antioxidants like GSH play an important role in the detoxification of ROS and reactive oxygen species by directly acting as electron
 +
                donors;, changing the unbalanced electron state of the free radicals and turningand, turning them into less harmful substances or affect
 +
                them indirectly by getting in the way of the expression of free radical generating enzymes (Lü et al., 2014).
 +
            </p>
 +
 
 +
            <div class="col-md-12 parts-photo-box">
 +
                <img src="https://static.igem.org/mediawiki/2018/6/62/T--METU_HS_Ankara--bparts03.jpg" />
 +
                <br>
 +
                <i class="parts-info" style="margin-bottom: 20px">
 +
                    Figure 3:<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571001">BBa_K2571001</a>: GSH was cloned into pSB1C3.
 +
                </i>
 +
            </div>
 +
 
 +
            <div style="clear: both"></div>
 +
 
 +
            <div class="col-md-6" style="margin-bottom: 30px">
 +
                <img width="500" src="https://static.igem.org/mediawiki/2018/6/6e/T--METU_HS_Ankara--bparts04.jpg" />
 +
                <br>
 +
                <i class="parts-info">
 +
                    Figure 4: BBa_K2571001 check with GSH specific primers. Expected band length: 225 bp. GSH basic well show positive results.
 +
                </i>
 +
            </div>
 +
 
 +
            <div class="col-md-6">
 +
                <p>
 +
                    We’ve inserted the geneour GSH, basic part 2, to pSB1C3 backbone and transformed it to DH5 alpha. After plasmid isolation,
 +
                    we’ve checked the orientation with GSH specific primers and expected to see a band of 225 bp.
 +
                </p>
 +
            </div>
 +
 
 +
            <div style="clear: both"></div>
 +
 
 +
            <p>
 +
                GSH left and right primers are shown as below:
 +
                <br>
 +
                GSH left: TCGGAGGCTAAAACTCAGGA
 +
                <br>
 +
                GSH right: GTGGGCAGTCCAGTCGTAAT
 +
            </p>
 +
 
 +
 
 +
            <section class="ct-u-paddingTop50 ct-u-paddingBottom80 ct-u-borderBoth ct-u-backgroundGray">
 +
                <div class="container">
 +
                    <div class="row">
 +
                        <div class="col-md-12">
 +
                            <div class="panel-group" id="accordion">
 +
                                <div class="panel panel-default">
 +
                                    <div class="panel-heading">
 +
                                        <h4 class="panel-title">
 +
                                            <a data-toggle="collapse" data-parent="#accordion" href="#collapseOne">
 +
                                                References
 +
                                            </a>
 +
                                        </h4>
 +
                                    </div>
 +
                                    <div id="collapseOne" class="panel-collapse collapse">
 +
                                            <ul>
 +
                                                <li>
 +
                                                    <span style="font-weight:bold">Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., … Gorsich,
 +
                                                    S. W.</span> (2010). Furfural induces reactive oxygen species accumulation and cellular damage in
 +
                                                    Saccharomyces cerevisiae. Biotechnology for Biofuels, 3, 2.
 +
                                                    <a href="http://doi.org/10.1186/1754-6834-3-2">http://doi.org/10.1186/1754-6834-3-2</a>
 +
                                                </li>
 +
                                                <li>
 +
                                                    <span style="font-weight:bold">Chou, H.-H., Marx, C. J., & Sauer, U.</span> (2015). Transhydrogenase Promotes the Robustness and Evolvability of
 +
                                                    E. coli Deficient in NADPH Production. PLoS Genetics, 11(2), e1005007.
 +
                                                    <a href="http://doi.org/10.1371/journal.pgen.1005007">http://doi.org/10.1371/journal.pgen.1005007</a>
 +
                                                </li>
 +
                                                <li>
 +
                                                    <span style="font-weight:bold">Liu, Z.L., Ma M., Song, M.</span>(2009). Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic
 +
                                                    biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 282, 233-244. doi:
 +
                                                    10.1007/s00438-009-0461-7
 +
                                                </li>
 +
                                                <li>
 +
                                                    <span style="font-weight:bold">Wang, X., Miller, E. N., Yomano, L. P., Zhang, X., Shanmugam, K. T., & Ingram, L. O.</span> (2011). Increased
 +
                                                    Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains
 +
                                                    Engineered for the Production of Ethanol and Lactate. Applied and Environmental Microbiology, 77(15),
 +
                                                    5132–5140. <a href="http://doi.org/10.1128/AEM.05008-11">http://doi.org/10.1128/AEM.05008-11</a>
 +
                                                </li>
 +
                                                <li>
 +
                                                    <span style="font-weight:bold">Zheng, H., Wang, X., Yomano, L.P., Geddes, R.D, Shanmugan, K. T., Ingram, L.O.</span> (2013). Improving
 +
                                                    Escherichia coli FucO for Furfural Tolerance by Saturation Mutagenesis of Individual Amino Acid Positions.
 +
                                                    Applied and Environmental Microbiology Vol 79, no 10. 3202–3208.
 +
                                                    <a href="http://aem.asm.org/content/79/10/3202.full.pdf+html">http://aem.asm.org/content/79/10/3202.full.pdf+html</a>
 +
                                                </li>
 +
                                                <li>
 +
                                                    <span style="font-weight:bold">Lu, S. C.</span> (2013). Glutathione Synthesis. Biochemical et Biophysica Acta, 1830(5), 3143–3153.
 +
                                                    <a href="http://doi.org/10.1016/j.bbagen.2012.09.008">http://doi.org/10.1016/j.bbagen.2012.09.008</a>
 +
                                                </li>
 +
                                                <li>
 +
                                                    <span style="font-weight:bold">National Center for Biotechnology Information.</span> PubChem Compound Database; CID=124886,
 +
                                                    <a href="https://pubchem.ncbi.nlm.nih.gov/compound/124886">https://pubchem.ncbi.nlm.nih.gov/compound/124886</a> (accessed July 18, 2018).  
 +
                                                    <a href="https://pubchem.ncbi.nlm.nih.gov/compound/124886#section=Top">https://pubchem.ncbi.nlm.nih.gov/compound/124886#section=Top</a>
 +
                                                </li>
 +
                                                <li>
 +
                                                    <span style="font-weight:bold">Pizzorno, J.</span> (2014). Glutathione! Integrative Medicine: A Clinician’s Journal, 13(1), 8–12.
 +
                                                    <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684116/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684116/</a>
 +
                                                </li>
 +
                                                <li>
 +
                                                    <span style="font-weight:bold">Burton, G. J., & Jauniaux, E.</span> (2011). Oxidative stress. Best Practice & Research. Clinical Obstetrics &
 +
                                                    Gynaecology, 25(3), 287–299.
 +
                                                    <a href="http://doi.org/10.1016/j.bpobgyn.2010.10.016">http://doi.org/10.1016/j.bpobgyn.2010.10.016</a>
 +
                                                </li>
 +
                                                <li>
 +
                                                    <span style="font-weight:bold">Lü, J.-M., Lin, P. H., Yao, Q., & Chen, C.</span> (2010). Chemical and molecular mechanisms of antioxidants:
 +
                                                    experimental approaches and model systems. Journal of Cellular and Molecular Medicine, 14(4), 840–860.
 +
                                                    <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684116/">http://doi.org/10.1111/j.1582-4934.2009.00897.x</a>
 +
                                                </li>
 +
                                            </ul>
 +
                                           
 +
                                    </div>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </section>
 +
 
 +
        </div>
 +
    </section>
  
 
</html>
 
</html>
 +
 +
{{METU_HS_Ankara/footer}}

Revision as of 09:43, 2 October 2018

METU HS IGEM

METUHSIGEM_LOGO

Basic Parts

Name Type Description Designer Length
BBa_K2571000 FucO /L-1,2-propanediol oxidoreductase Tugba Inanc & Ceyhun Kayihan 1152bp
BBa_K2571001 Bifunctional gamma-glutamate-cysteine ligase/Glutathione synthetase Tugba Inanc & Ceyhun Kayihan 2268bp

FucO (BBa_K2571000)

FucO is a protein-coding region that codes for L-1,2-propanediol oxidoreductase which is an NADH-linked, homodimer enzyme having the role of acting on furfural. Furfural is a highly toxic substance which inhibits is a toxic inhibitor of microbial fermentations causing cell wall and membrane damages, DNA breakdowns, DNA cleavages and reduced enzymatic activities (Zheng, 2013; Liu, Ma & Song, 2009).

In the presence of furfural, NADPH-dependent oxidoreductases goes active in order to reduce furfural into its less toxic alcohol derivative - furfuryl alcohol (Zheng, 2013; Wang et al., 2013; Allen et al., 2010). In this pathway, the expression of oxidoreductases that are NADPH-dependent, such as YqhD, are shown to inhibit the growth and fermentation in E. coli by competing with biosynthesis for NADPH (Zheng, 2013).

Because the native conversion of NADH to NADPH in E. coli is insufficient to revitalize the NADPH pool during fermentation, the actions shouldn’t be interfering with NADPH metabolism (Wang et al, 2011). Thus, the overexpression of plasmid-based NADH-dependent propanediol oxidoreductase (FucO) gene reduces furfural to ultimately improve furfural resistance without detrimentally affecting the biosynthesis of NADPH (Wang et al, 2011).


Figure 1: BBa_K2571000: fucO was cloned into pSB1C3.

We’ve inserted the gene our FucO, which is our basic part 1,to pSB1C3 backbone and transformed it to DH5- alpha. After plasmid isolation, we’ve checked the orientation with FucO left and VR primers and expected to see a band of 625 bp.

FucO and VR primers are as below:
FucO left: GTGATAAGGATGCCGGAGAA
VR: ATTACCGCCTTTGAGTGAGC

GSH (BBa_K2571001)

GSH as is a protein-coding region that codes for Bifunctional gamma glutamate cysteine ligase/ Glutathione synthetase.

Glutathione (GSH) is known to be an important antioxidant that is a sulfur compound; a tripeptide composed of three amino acids (cysteine, glycine and glutamic acid) and a non-protein thiol (Pizzorno, 2014; Lu, 2013). GHS is, furthermore, found in thiol-reduced form which accounts for its strength as an antioxidant.

Reactive oxygen species (ROS) are harmful substances that distort protein based matters by taking electrons and also causes oxidative stress (Lu, 2013) which occur during the fermentation process and is another major setback. The chemical structure of the protein-based substances such as the DNA are altered and become therefore become dysfunctional because of ROS (Lu, 2013; Burton & Jauniaux, 2011).

GSH is generally found in the thiol-reduced form which is crucial for detoxification of ROS and free radicals. which cause oxidative stress. (Lu, 2013; Burton & Jauniaux, 2011).

Antioxidants like GSH play an important role in the detoxification of ROS and reactive oxygen species by directly acting as electron donors;, changing the unbalanced electron state of the free radicals and turningand, turning them into less harmful substances or affect them indirectly by getting in the way of the expression of free radical generating enzymes (Lü et al., 2014).


Figure 3:BBa_K2571001: GSH was cloned into pSB1C3.

Figure 4: BBa_K2571001 check with GSH specific primers. Expected band length: 225 bp. GSH basic well show positive results.

We’ve inserted the geneour GSH, basic part 2, to pSB1C3 backbone and transformed it to DH5 alpha. After plasmid isolation, we’ve checked the orientation with GSH specific primers and expected to see a band of 225 bp.

GSH left and right primers are shown as below:
GSH left: TCGGAGGCTAAAACTCAGGA
GSH right: GTGGGCAGTCCAGTCGTAAT

  • Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., … Gorsich, S. W. (2010). Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnology for Biofuels, 3, 2. http://doi.org/10.1186/1754-6834-3-2
  • Chou, H.-H., Marx, C. J., & Sauer, U. (2015). Transhydrogenase Promotes the Robustness and Evolvability of E. coli Deficient in NADPH Production. PLoS Genetics, 11(2), e1005007. http://doi.org/10.1371/journal.pgen.1005007
  • Liu, Z.L., Ma M., Song, M.(2009). Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 282, 233-244. doi: 10.1007/s00438-009-0461-7
  • Wang, X., Miller, E. N., Yomano, L. P., Zhang, X., Shanmugam, K. T., & Ingram, L. O. (2011). Increased Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains Engineered for the Production of Ethanol and Lactate. Applied and Environmental Microbiology, 77(15), 5132–5140. http://doi.org/10.1128/AEM.05008-11
  • Zheng, H., Wang, X., Yomano, L.P., Geddes, R.D, Shanmugan, K. T., Ingram, L.O. (2013). Improving Escherichia coli FucO for Furfural Tolerance by Saturation Mutagenesis of Individual Amino Acid Positions. Applied and Environmental Microbiology Vol 79, no 10. 3202–3208. http://aem.asm.org/content/79/10/3202.full.pdf+html
  • Lu, S. C. (2013). Glutathione Synthesis. Biochemical et Biophysica Acta, 1830(5), 3143–3153. http://doi.org/10.1016/j.bbagen.2012.09.008
  • National Center for Biotechnology Information. PubChem Compound Database; CID=124886, https://pubchem.ncbi.nlm.nih.gov/compound/124886 (accessed July 18, 2018). https://pubchem.ncbi.nlm.nih.gov/compound/124886#section=Top
  • Pizzorno, J. (2014). Glutathione! Integrative Medicine: A Clinician’s Journal, 13(1), 8–12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684116/
  • Burton, G. J., & Jauniaux, E. (2011). Oxidative stress. Best Practice & Research. Clinical Obstetrics & Gynaecology, 25(3), 287–299. http://doi.org/10.1016/j.bpobgyn.2010.10.016
  • Lü, J.-M., Lin, P. H., Yao, Q., & Chen, C. (2010). Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. Journal of Cellular and Molecular Medicine, 14(4), 840–860. http://doi.org/10.1111/j.1582-4934.2009.00897.x