Difference between revisions of "Team:NCKU Tainan/Applied Design"

Line 29: Line 29:
 
                                       <ol>
 
                                       <ol>
 
                                         <li class="licontent">Overview</li>
 
                                         <li class="licontent">Overview</li>
                                         <p class="pcontent">The emission of carbon dioxide (CO<sub>2</sub>) is a serious problem
+
                                         <p class="pcontent">In this project, we, the NCKU Tainan Team, have proposed an alternative way to reduce the emission of Carbon dioxide (CO<sub>2</sub>). Referring to the opinions and feedbacks from many industry experts and professors, we design a new factory flow to capture CO<sub>2</sub> by <i>E. coli</i> Not only our device meets the specs to commercialize, but it also demonstrates high cost performance.  
                                            the world has faced for a century. Although existing methods can reduce carbon dioxide,
+
                                            it still can't load massive emission of CO<sub>2</sub> from the industry.
+
                                            Thus, our team uses <i>E. coli</i> to capture CO<sub>2</sub>,  
+
                                            providing another choice in excessive CO<sub>2</sub> emission problems.
+
 
                                         </p>
 
                                         </p>
                                         <p class="pcontent">In addition, we trace back to the CO<sub>2</sub> emission source.  
+
                                         <p class="pcontent">The emission of CO<sub>2</sub> has been a serious problem for a century that causes global warming and severe climate change. Even though many ways have been tried to reduce it, the generation of CO<sub>2</sub> primarily from industry is still overwhelming. Therefore, scientists and governments have been working hard to find solutions to tackle the problem.  
                                            Factories are the main field to produce large amounts of CO<sub>2</sub>,
+
                                            so we designed a complete factory flow chart. We received lots of suggestions provided by industry,
+
                                            professors and experts in different specialties.  
+
                                            After considering all cost advantages, we have built a device which has commercial specifications.
+
 
                                         </p>
 
                                         </p>
 
                                         <li class="licontent">Control System</li>
 
                                         <li class="licontent">Control System</li>
Line 46: Line 38:
 
                                         </div>
 
                                         </div>
 
                                         <p class="pcenter">Fig. 2 Overview of the control system </p>                                   
 
                                         <p class="pcenter">Fig. 2 Overview of the control system </p>                                   
                                         <p class="pcontent">There are many aspects we need to consider.  
+
                                         <p class="pcontent">There are many aspects we need to consider. First, we calculate the emission velocity of CO<sub>2</sub> from the factory, as well as the medium exchange rate and the growth rate of our <i>E. coli</i>.
                                            First, we consider the emission velocity of carbon dioxide from the factory,  
+
Fig. 1 is a process of whole <i>E. coli</i> carbon utilization that we design for industrial application. We simplify it into three parts which shows in Fig. 2 to explain more clearly. Three switches control three parts, named A, B and C. Basically, the factory replaces the medium twice a day. At one hour before replacing the medium, the user needs to turn on switch C to discharge ninety percent of the medium. When it is time to replace the medium, switch C will be turned off and switch B will be turned on to refill medium. When sufficient medium is added, switch B will be turned off and switch A will be turned on to let CO<sub>2</su>b in. Just like the animation showed on Fig. 1.  
                                            the medium exchange rate and the growth time of our <i>E. coli</i>.  
+
 
                                            We design a process. From Fig. 1 and Fig. 2, there will be three parts in <i>E. coli</i>  
+
                                            carbon utilization system. Three switches control three parts, named A, B and C.  
+
                                            Basically, the factory needs to replace the medium twice a day.  
+
                                            At one hour before replacing the medium, the user needs to turn on switch C to discharge  
+
                                            ninety percent of the medium. When it is time to replace the medium,  
+
                                            switch C will be turned off and switch B will be turned on to refill medium.  
+
                                            When sufficient medium is added, switch B will be turned off and switch A will be turned on  
+
                                            to let CO<sub>2</sub> in. Just like the animation showed on Fig. 1.
+
 
                                         </p>
 
                                         </p>
                                         <p class="pcontent">In order to reduce the cost, on the growth time of our <i>E. coli</i> and floor area,  
+
                                         <p class="pcontent">Considering the cost, the growth time of our <i>E. coli</i> and the floor area, we optimized replace time of the medium, replace it every twelve hours and with 72 parallel bioreactors.  
                                            we decided to replace the medium every twelve hours and use 72 parallel bioreactors.
+
Next, we are going to have more detail description on three parts, which are <a class="link" href="#gas_and_flow_system">Gas preparation system and flow system</a>,  
                                            Next, we are going to have more detail description on three parts,  
+
                                            which are <a class="link" href="#gas_and_flow_system">Gas preparation system and flow system</a>,  
+
 
                                             <a class="link" href="#medium_preparation">Medium preparation</a>,  
 
                                             <a class="link" href="#medium_preparation">Medium preparation</a>,  
 
                                             and <a class="link" href="#downstream">Downstream products purification and biosafety</a>.  
 
                                             and <a class="link" href="#downstream">Downstream products purification and biosafety</a>.  
Line 71: Line 53:
 
                                         </div>
 
                                         </div>
 
                                         <p class="pcenter"> Fig. 3 Diagram of gas preparation system and flow system </p>
 
                                         <p class="pcenter"> Fig. 3 Diagram of gas preparation system and flow system </p>
                                         <p class="pcontent">According to IGCC (Integrate Gasification Combined Cycle) flow chart,  
+
                                         <p class="pcontent">According to IGCC (Integrate Gasification Combined Cycle) flow diagram, the fuel is first converted to syngas which is a mixture of H<sub>2</sub> and CO. The syngas is then burned in a combined cycle consisting of a gas turbine and a steam turbine with a heat recovery steam generator (HRSG). After CO<sub>2</sub> / H<sub>2</sub> separation, IGCC can reach the demand of CO<sub>2</sub> purity including low SOx and NOx emission fraction of allowable limits of bacteria. Finally, the produced flue gas could enter the pipeline leading to the bioreactor.
                                            the syngas has been treated by sulfur and nitrogen removal,  
+
In <i>E. coli </i>utilization system, the air is pumped in to neutralize the concentration of CO<sub>2</sub>. A controlled valve is used to control flow rate and split distribution. When the switch a is turned on, the switch b will be turned off, and vice versa. As for the CO<sub>2</sub> inlet and outlet, it will maintain an open system of bioreactor. In other words, CO<sub>2</sub> will enter continuously and cause some non-reacted CO<sub>2</sub> emitted.  
                                            as well as heavy metal removal and cooling tank.  
+
                                            Then it produces flue gas that enters the pipeline leading to the bioreactor.  
+
                                            Besides, we pump the air to neutralize the concentration of CO<sub>2</sub>.  
+
                                            Control flow rate and split distribution with controlled valve.  
+
                                            When the switch a is turned on, the switch b will be turned off, and vice versa.  
+
                                            As for the CO<sub>2</sub> inlet and outlet, it will maintain an open system of bioreactor.  
+
                                            In other words, CO<sub>2</sub> will enters continuously and there will still cause  
+
                                            some non-reacted CO<sub>2</sub> emitted.
+
 
                                         </p>
 
                                         </p>
 +
                                        <div class="centerimg">
 +
                                            <img class="smallimg" src="https://static.igem.org/mediawiki/2018/f/f4/T--NCKU_Tainan--IGCC.png" alt="medium">
 +
                                        </div>
 +
                                        <p class="pcenter"> Fig. 4 IGCC process flow diagram. source:
 +
Syngas has been treated by sulfur and nitrogen removal, as well as heavy metal removal and cooling tank. Through IGCC process, purified CO<sub>2</sub> in flue gas is allowable for <i>E. coli</i> CO<sub>2</sub> utilizing. </p>
 +
 +
 
                                         <h5 class="boldh5" id="medium_preparation">B. Medium preparation</h5>
 
                                         <h5 class="boldh5" id="medium_preparation">B. Medium preparation</h5>
 
                                         <div class="centerimg">
 
                                         <div class="centerimg">
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/f/f4/T--NCKU_Tainan--applied_design_medium.png" alt="medium">
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/f/f4/T--NCKU_Tainan--applied_design_medium.png" alt="medium">
 
                                         </div>
 
                                         </div>
                                         <p class="pcenter"> Fig. 4 Diagram of medium preparation</p>
+
                                         <p class="pcenter"> Fig. 5 Diagram of medium preparation</p>
                                         <p class="pcontent">At this stage we will match the proportion of m9 salt and xylose and change it into powder.  
+
                                         <p class="pcontent">At this stage, we have two sections to consider, medium storage and medium preparation before replacing time. 
                                            At one hour before replacing the medium, pour the powder into the medium box and turn on  
+
The medium is composed of M9 salt and xylose. For storage, we will convert it into powder with the required proportion. At one hour before replacing time, pour the powder into the medium tank and turn on the water injection switch. Turn on the stirrer of medium tank to have medium powder and water perfect mixing. The outlet of bioreactor (switch c) will be turned on at the same time, letting ninety percent of the medium in the bioreactor flow out . When the medium have prepared well, turn on the switch a and switch b for replacing medium in bioreactor, while the switch c will be turned off.
                                            the water injection switch. The medium box will use a stirrer to stir and at the same time
+
                                            the outlet of bioreactor (switch c) will turn on to let ninety percent of the medium in the bioreactor flow out.  
+
                                            When it is time to replace medium,  
+
                                            turn on the switch a and switch b, at the same time, the switch c will be turned off.
+
 
                                         </p>
 
                                         </p>
 +
                                        <p class="pcontent">We also consider the process of raw materials, especially xylose, which is the key source of our pathway. Since xylose is one of the products of agricultural waste degradation, we visited the  <a class="link" href="#gas_and_flow_system">2018 Tainan Biotechnology and Green Energy Expo </a> to consulted with researchers from National Energy Program-Phase II, whose projects was biofuel and biodegradable plastic production via agricultural waste.  They had developed technique that degrade cellulose and semi-cellulose by ion solution.
 +
                                        </p>
 +
Besides, we have opportunity to collaborate with <a class="link" href="#gas_and_flow_system">UESTC-Chian team </a>. They work for degrading straw with synthetic biology and convert the product into bio-fuel. One of the product from straw degradation is xylose. These techniques are eco-friendly and low-energy-require. Therefore, the process development of xylose production will be a low-carbon-emission process.   
 
                                         <h5 class="boldh5" id="downstream">C. Downstream products purification and biosafety</h5>
 
                                         <h5 class="boldh5" id="downstream">C. Downstream products purification and biosafety</h5>
 
                                         <div class="centerimg">
 
                                         <div class="centerimg">
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/7/7e/T--NCKU_Tainan--applied_design_downstream.png" alt="downstream">
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/7/7e/T--NCKU_Tainan--applied_design_downstream.png" alt="downstream">
 
                                         </div>
 
                                         </div>
                                         <p class="pcenter"> Fig. 5 Diagram of downstream process</p>
+
                                         <p class="pcenter"> Fig. 6 Diagram of downstream process</p>
                                         <p class="pcontent">We will dispose 30% of the used medium in the bioreactor one hour before new medium flows in.  
+
                                         <p class="pcontent">We will discharge 90% of the used medium in the bioreactor one hour before new medium flows in. Which means that we let 10% of the reacted bacteria remain in the bioreactor to maintain a steady cell density condition of in the bioreactor. The effluent medium will be sterilized and filtered in the downstream clean-up tank. At this step, we harvest the bacteria by centrifuging and extracting the by-product such as amino acids, proteins, medicine or bio-fuel. Different extracting process designed depends on different by-product.
                                            Which means we let 30% of the used bacteria remain in the bioreactor.
+
 
                                            We designed this system to maintain a steady amount of bacteria in our bioreactor.  
+
Besides, we try to reuse the waste heat of factories for sterilizing. The waste water can be recycled as well. Through Removing toxins and adjusting pH value
                                            The used medium will be sterilized and filtered in the downstream clean-up tank.  
+
 
                                            At this step, we can harvest the bacteria by centrifuging and extracting the terminal product such as amino acids,  
+
the effluent could return to the medium tank. As for energy require for this system, renewable energy helps us to reach near -zero carbon emission process.
                                            proteins, medicine or bio-fuel. The expect the heat for sterilizing is from the waste heat of factories,
+
                                            the waste water can be recycled after removing toxins,
+
                                            and adjusting pH value and the energy the device require is green energy.
+
 
                                         </p>
 
                                         </p>
 
                                     </ol>
 
                                     </ol>
Line 113: Line 90:
 
                                     <h3>Entrepreneurship : China Steel</h3>
 
                                     <h3>Entrepreneurship : China Steel</h3>
 
                                     <img class="bigimg" src="https://static.igem.org/mediawiki/2018/a/a9/T--NCKU_Tainan--applied_design_chinasteel1.png" alt="china_steel">
 
                                     <img class="bigimg" src="https://static.igem.org/mediawiki/2018/a/a9/T--NCKU_Tainan--applied_design_chinasteel1.png" alt="china_steel">
                                     <p class="pcenter">Fig.6 Picture of CSC interview</p>
+
                                     <p class="pcenter">Fig.7 Picture of CSC interview</p>
 
                                     <p class="pcontent">Meeting with experts and stakeholders is important in shaping our project to fulfill the needs of our target user.  
 
                                     <p class="pcontent">Meeting with experts and stakeholders is important in shaping our project to fulfill the needs of our target user.  
 
                                     China Steel Corporation is the largest integrated steel Manufacturer in Taiwan. Also, they had been adopting the algal bio-sequestration by  
 
                                     China Steel Corporation is the largest integrated steel Manufacturer in Taiwan. Also, they had been adopting the algal bio-sequestration by  
Line 409: Line 386:
 
                                         <img style="width: 70%; height: auto;" src="https://static.igem.org/mediawiki/2018/1/15/T--NCKU_Tainan--applied_design_future_work.png" alt="gasflow">
 
                                         <img style="width: 70%; height: auto;" src="https://static.igem.org/mediawiki/2018/1/15/T--NCKU_Tainan--applied_design_future_work.png" alt="gasflow">
 
                                     </div>
 
                                     </div>
                                         <p class="pcenter"> Fig. 7 Diagram of pyruvate in central carbon metabolism </p>
+
                                         <p class="pcenter"> Fig. 8 Diagram of pyruvate in central carbon metabolism </p>
 
                                     <p class="pcontent">Furthermore, researchers have successfully constructed pathways produced cellulose and  
 
                                     <p class="pcontent">Furthermore, researchers have successfully constructed pathways produced cellulose and  
 
                                         Poly 3-Hydroxybutyrate-co-3-Hydroxyvalerate through the TCA cycle.  
 
                                         Poly 3-Hydroxybutyrate-co-3-Hydroxyvalerate through the TCA cycle.  

Revision as of 01:57, 8 October 2018

Product Design

Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)