Difference between revisions of "Team:SJTU-BioX-Shanghai/Model"

Line 142: Line 142:
 
                 <a id="section2">
 
                 <a id="section2">
 
                     <span class="place_holder"></span>
 
                     <span class="place_holder"></span>
                     Section2
+
                     Technical description
 
                 </a>
 
                 </a>
 
             </h2>
 
             </h2>
             <p>xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxxxxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxxxxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
+
             <p>
 +
Tools: SimBiology Toolbox in MATLAB <br>
 +
Context: <br>
 +
1.The regulation of expression of acoustic reporter genes—ARG1 and combined fluorescent signal reporter gene amiGFP is closely related to NO-sensitive promoter. And the density and distribution of NO in gastroenterological microenvironment is crucial to the switch-on/off state of the promoter. We will build a synthetic gene circuit in <strong>MATLAB in SimBiology Toolbox</strong> </span>, to determine the cut-off value of this switch, for downstream gene expression in a time-dependent manner. <br>
 +
2.In the context of cell lysis gene X174E expression and anti-tumor drug release, we will assist to choose the proper promoter based on their startup parameters, and create negative-feedback control loop for persistent drug production. <br>
 +
 
 +
Tools: COMSOL Multiphysics <br>
 +
Context: <br>
 +
We perform three simulations in Comsol. <br>
 +
1. Using a single-phase flow Laminar (SPF) model, the steady state parameters are added, the particle tracking model (based on particle size, viscous force, charge number, etc.) is applied to analyze the velocity and probability distribution of particles in laminar flow (PDF).  <br>
 +
2. Using the laminar flow model of Multiphase stream (solid-liquid solid), the velocity of particle motion is simulated.  <br>
 +
3. Using convection wave equation, time domain explicit (CWE), for different characters and sizes of the bubble protein, as well as different ultrasonic emission power and collapse power, the ultrasonic signal simulation.  <br>
 +
 
 +
Tools: R <br>
 +
Context: <br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 
             </p>
 
             </p>
 
              
 
              

Revision as of 08:08, 12 October 2018

Model Overview

Why did we model? What did we want to achieve?

The goals for modeling are firstly to design and optimize the project (how to produce the results), and secondly to simulate and analyze (what the results are and how they are) the expected behaviors in conjunction with experiments in the wetlab. So we calculate the response of lysis protein production in front of Ara per os oral administration of arabinose , and modify the gene circuit by introducing attenuator based on calculation. For simulating the locomotion of bacteria in human colorectum, we introduce young's modulus https://en.wikipedia.org/wiki/Young%27s_modulus of bacteria, and simulate its fluid mechanic behavior. We analyse the ultrasonic response of gas vesicles in our device, by firstly build ing the rigid ball model, develop it to covered elastic ball model, and modify the key parameters by experimental results. .

Technical description

Tools: SimBiology Toolbox in MATLAB
Context:
1.The regulation of expression of acoustic reporter genes—ARG1 and combined fluorescent signal reporter gene amiGFP is closely related to NO-sensitive promoter. And the density and distribution of NO in gastroenterological microenvironment is crucial to the switch-on/off state of the promoter. We will build a synthetic gene circuit in MATLAB in SimBiology Toolbox , to determine the cut-off value of this switch, for downstream gene expression in a time-dependent manner.
2.In the context of cell lysis gene X174E expression and anti-tumor drug release, we will assist to choose the proper promoter based on their startup parameters, and create negative-feedback control loop for persistent drug production.
Tools: COMSOL Multiphysics
Context:
We perform three simulations in Comsol.
1. Using a single-phase flow Laminar (SPF) model, the steady state parameters are added, the particle tracking model (based on particle size, viscous force, charge number, etc.) is applied to analyze the velocity and probability distribution of particles in laminar flow (PDF).
2. Using the laminar flow model of Multiphase stream (solid-liquid solid), the velocity of particle motion is simulated.
3. Using convection wave equation, time domain explicit (CWE), for different characters and sizes of the bubble protein, as well as different ultrasonic emission power and collapse power, the ultrasonic signal simulation.
Tools: R
Context:

Section3

xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx. The text-link template is here.

2018 Interlab Plate Reader Protocol
Protocols/Transformation

section4

xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx The figure template is here.

Fig 1. The particle standard curve obtained form the 2nd calibration experiment.

xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx.

The table template is here.

Table 1. Colony forming units per 0.1 OD600

samples dilution factor CFU/mL
8×104 8×105 8×106
1.1 TNTC 48 11 3.84E+07
1.2 248 41 10 3.28E+07
1.3 172 54 5 4.32E+07
2.1 TNTC 143 20 1.14E+08
2.2 TNTC 153 25 1.22E+08
2.3 TNTC 151 18 1.21E+08
3.1 TNTC 119 16 9.52E+07
3.2 TNTC 125 19 1.00E+08
3.3 TNTC 89 18 7.12E+07
4.1 TNTC 209 16 1.67E+08
4.2 TNTC 130 17 1.04E+08
4.3 TNTC 164 10 1.31E+08

Section5

XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX