Difference between revisions of "Team:NCKU Tainan/Kinetic Law"

Line 68: Line 68:
 
                                         <p class="pcontent">$${{dP \over dt} = k_2ES}$$</p>
 
                                         <p class="pcontent">$${{dP \over dt} = k_2ES}$$</p>
 
                                         <p class="pcontent">After derivation $${v = {-ds \over dt} = {dP \over dt}}$$</p>
 
                                         <p class="pcontent">After derivation $${v = {-ds \over dt} = {dP \over dt}}$$</p>
                                         <p class="pcontent">where Vm represents the maximum rate achieved by the system,  
+
                                         <p class="pcontent">where V<sub>m</sub> represents the maximum rate achieved by the system,  
                                             and the Km is the substrate concentration at which the reaction rate is half of Vm.
+
                                             and the Km is the substrate concentration at which the reaction rate is half of V<sub>m</sub>.
 
                                         </p>
 
                                         </p>
                                         <p class="pcontent">The constants vmax and Km can be looked up at the public data base BRENDA.  
+
                                         <p class="pcontent">The constants v<sub>max</sub> and Km can be looked up at the public data base BRENDA.  
                                             The rate konstant k2 describes how many substrate molecules are transformed into product molecules per second and active site,  
+
                                             The rate konstant k<sub>2</sub> describes how many substrate molecules are transformed into product molecules per second and active site,  
 
                                             it is thus called turnover number.
 
                                             it is thus called turnover number.
 
                                         </p>
 
                                         </p>
                                         <p class="pcontent">$${Vmax = k_2 \cdot E_{total} = k_{cat} \cdot E_{total}}$$</p>
+
                                         <p class="pcontent">$${V<sub>max</sub> = k_2 \cdot E_{total} = k_{cat} \cdot E_{total}}$$</p>
 
                                         <p class="pcontent">B. A more realistic description of a enzymatic reactions than pure Michaelis Menten Kinetics  
 
                                         <p class="pcontent">B. A more realistic description of a enzymatic reactions than pure Michaelis Menten Kinetics  
 
                                             is given by considering the product forming reaction step as reversible.
 
                                             is given by considering the product forming reaction step as reversible.
Line 91: Line 91:
 
                                         <p class="pcontent">Finally we use Vfmax = k2⋅Etotal and V<sub>b</sub>max = k<sub>−1</sub>⋅Etotal to get the common form for the reversible Michaelis Menten equation</p>
 
                                         <p class="pcontent">Finally we use Vfmax = k2⋅Etotal and V<sub>b</sub>max = k<sub>−1</sub>⋅Etotal to get the common form for the reversible Michaelis Menten equation</p>
 
                                         <p class="pcontent">$${v = {v^{max}_f S/K_{m,1} - v^{max}_b P/K_{m,2} \over (1 + S/K_{m,1} + P/K_{m,1})}}$$</p>
 
                                         <p class="pcontent">$${v = {v^{max}_f S/K_{m,1} - v^{max}_b P/K_{m,2} \over (1 + S/K_{m,1} + P/K_{m,1})}}$$</p>
                                         <p class="pcontent">Where Vf is the forward rate and the Vb is backwared rate while $${K_{m,1} = {K_{-1} + K_2 \over K_1}}$$ or represents as KS,  
+
                                         <p class="pcontent">Where V<sub>f</sub> is the forward rate and the Vb is backwared rate while $${K_{m,1} = {K_{-1} + K_2 \over K_1}}$$ or represents as KS,  
 
                                             and $${K_{m,2} = {K_{-1} + K_2 \over K_{-2}}}$$ or represent as KP.</p>
 
                                             and $${K_{m,2} = {K_{-1} + K_2 \over K_{-2}}}$$ or represent as KP.</p>
 
                                         <li id="ping_pong_bi_bi">Ping-Pong-Bi-Bi</li>
 
                                         <li id="ping_pong_bi_bi">Ping-Pong-Bi-Bi</li>
Line 100: Line 100:
 
                                             The double matrix reaction can still be applied to the Henri-Michaelis-Menten formula,  
 
                                             The double matrix reaction can still be applied to the Henri-Michaelis-Menten formula,  
 
                                             but the Km of the two matrices should be determined separately.  
 
                                             but the Km of the two matrices should be determined separately.  
                                             In addition, the concentration of S2 in the reaction should be saturated when S1 is measured.</p>
+
                                             In addition, the concentration of S_2 in the reaction should be saturated when S1 is measured.</p>
 
                                     </ol>
 
                                     </ol>
 
                                 </div>
 
                                 </div>

Revision as of 12:44, 14 October 2018

Kinetic law

Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)