Difference between revisions of "Team:NCKU Tainan/Kinetic Law"

Line 91: Line 91:
 
                                         <p class="pcontent">Finally we use V<sub>fmax</sub> = k2⋅Etotal and V<sub>bmax</sub> = k<sub>−1</sub>⋅Etotal to get the common form for the reversible Michaelis Menten equation</p>
 
                                         <p class="pcontent">Finally we use V<sub>fmax</sub> = k2⋅Etotal and V<sub>bmax</sub> = k<sub>−1</sub>⋅Etotal to get the common form for the reversible Michaelis Menten equation</p>
 
                                         <p class="pcontent">$${v = {v^{max}_f S/K_{m,1} - v^{max}_b P/K_{m,2} \over (1 + S/K_{m,1} + P/K_{m,1})}}$$</p>
 
                                         <p class="pcontent">$${v = {v^{max}_f S/K_{m,1} - v^{max}_b P/K_{m,2} \over (1 + S/K_{m,1} + P/K_{m,1})}}$$</p>
                                         <p class="pcontent">Where V<sub>f</sub> is the forward rate and the Vb is backwared rate while $${K_{m,1} = {K_{-1} + K_2 \over K_1}}$$ or represents as KS,  
+
                                         <p class="pcontent">Where V<sub>f</sub> is the forward rate and the Vb is backwared rate while $${K_{m,1} = {K_{-1} + K_2 \over K_1}}$$ or represents as K<sub>S</sub>,  
 
                                             and $${K_{m,2} = {K_{-1} + K_2 \over K_{-2}}}$$ or represent as K<sub>P</sub>.</p>
 
                                             and $${K_{m,2} = {K_{-1} + K_2 \over K_{-2}}}$$ or represent as K<sub>P</sub>.</p>
 
                                         <li id="ping_pong_bi_bi">Ping-Pong-Bi-Bi</li>
 
                                         <li id="ping_pong_bi_bi">Ping-Pong-Bi-Bi</li>

Revision as of 13:06, 14 October 2018

Kinetic law

Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)