Oscarliu117 (Talk | contribs) |
|||
Line 319: | Line 319: | ||
<h3>References</h3> | <h3>References</h3> | ||
<ol> | <ol> | ||
− | + | <li class="smallp">Michaelis Menten Kinetics in bio – physic wiki, web : http://www.bio-physics.at/wiki/index.php?title=Michaelis_Menten_Kinetics</li> | |
<li class="smallp">citric acid cycle from Brenda, web : https://www.brenda-enzymes.org/pathway_index.php?ecno=&brenda_ligand_id=Alpha-ketoglutarate&organism=Escherichia+coli&pathway=citric_acid_cycle&site=pathway</li> | <li class="smallp">citric acid cycle from Brenda, web : https://www.brenda-enzymes.org/pathway_index.php?ecno=&brenda_ligand_id=Alpha-ketoglutarate&organism=Escherichia+coli&pathway=citric_acid_cycle&site=pathway</li> | ||
− | <li class="smallp"> | + | <li class="smallp">U. Sauer, J. E. Bernhard, The PEP—pyruvate—oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiology Reviews, Volume 29, Issue 4, 1 September 2005, Pages 765–794.</li> |
− | <li class="smallp"> | + | <li class="smallp">O. Mugihito, S. Hideaki, T. Yukihiro , M Noriko, S. Tatsuya, O. Masahiro, I. Ayaaki, S. Kenji, Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering VOL. 108 No. 5, 376–384, 2009.</li> |
− | <li class="smallp"> | + | <li class="smallp"> W. Akira, N. Keisuke, H. Tomohiro, S. Ryohei, Reaction mechanism of phosphoribulokinase from a cyanobacterium, Synechococcus PCC7942. Photosynthesis Research 56: 27–33, 1998</li> |
− | <li class="smallp"> | + | <li class="smallp">G. B. Guillaume, D. F. Graham, T. J. Andrews, Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized Proc Natl Acad Sci U S A. 2006 May 9; 103(19): 7246–7251.</li> |
− | <li class="smallp"> | + | <li class="smallp"> L. Yun, A. M. Keith, Determination of Apparent Km Values for Ribulose 1,5- Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase Using the Spectrophotometric Assay of Rubisco Activity. Plant Physiol. (1991) 95, 604-609</li> |
<li class="smallp">Rong-guang Z, C. Evalena A., Alexei S., Tatiana S., Elena E., Steven B., Cheryl H. A., Aled M. E., Andrzej J., and Sherry L. M. Structure of <i>Escherichia Coli</i> Ribose-5-Phosphate Isomerase: A Ubiquitous Enzyme of the Pentose Phosphate Pathway and the Calvin Cycle Structure, Vol. 11, 31–42, January, 200</li> | <li class="smallp">Rong-guang Z, C. Evalena A., Alexei S., Tatiana S., Elena E., Steven B., Cheryl H. A., Aled M. E., Andrzej J., and Sherry L. M. Structure of <i>Escherichia Coli</i> Ribose-5-Phosphate Isomerase: A Ubiquitous Enzyme of the Pentose Phosphate Pathway and the Calvin Cycle Structure, Vol. 11, 31–42, January, 200</li> | ||
<li class="smallp">Inês L., Joana F., Christine C., Sandra M., Nuno S., Nilanjan R., Anabela C., and Joana T. Ribose 5-Phosphate Isomerase B Knockdown Compromises Trypanosoma brucei Bloodstream Form Infectivity PLoS Negl Trop Dis. 2015 Jan; 9(1): e3430.</li> | <li class="smallp">Inês L., Joana F., Christine C., Sandra M., Nuno S., Nilanjan R., Anabela C., and Joana T. Ribose 5-Phosphate Isomerase B Knockdown Compromises Trypanosoma brucei Bloodstream Form Infectivity PLoS Negl Trop Dis. 2015 Jan; 9(1): e3430.</li> | ||
<li class="smallp">Singh2006 TCA mtu model1. SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li> | <li class="smallp">Singh2006 TCA mtu model1. SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li> | ||
− | <li class="smallp"> | + | <li class="smallp">J. Shen, Modeling the glutamate–glutamine neurotransmitter cycle, Front. Neuroenergetics, 28 January 2013</li> |
− | <li class="smallp"> | + | <li class="smallp">X. Feng, H. Zhao, Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis, Microb Cell Fact. 2013; 12: 114.</li> |
− | <li class="smallp"> | + | <li class="smallp">D. Runquist, M. Bettiga, Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae, Microbial Cell Factories 2009, 8:49</li> |
<li class="smallp">Kalle Hult rev 2005, 2007 Linda Fransson Department of Biotechnology KTH, Stockholm, Enzyme kinetics, An investigation of the enzyme glucose-6- phosphate isomerase</li> | <li class="smallp">Kalle Hult rev 2005, 2007 Linda Fransson Department of Biotechnology KTH, Stockholm, Enzyme kinetics, An investigation of the enzyme glucose-6- phosphate isomerase</li> | ||
<li class="smallp">Model name: “Mosca2012 - Central Carbon Metabolism Regulated by AKT”, SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li> | <li class="smallp">Model name: “Mosca2012 - Central Carbon Metabolism Regulated by AKT”, SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li> | ||
− | <li class="smallp"> | + | <li class="smallp">M. Ettore, A. Roberta, M. Carlo, B. Annamaria, C. Gianfranco, M. Luciano, Computational modeling of the metabolic states regulated by the kinase Akt, Front. Physiol., 21 November 2012</li> |
− | <li class="smallp"> | + | <li class="smallp">E. G. Jacqueline, P. L. Christopher, R. A. Maciek, Comprehensive analysis of glucose and xylose metabolism in <i>Escherichia Coli</i> under aerobic and anaerobic conditions by 13C metabolic flux analysis, Metabolic Engineering Volume 39, January 2017, Pages 9-18</li> |
− | <li class="smallp">N. | + | <li class="smallp">N. N. Ulusu, C. Şengezer, Kinetic mechanism and some properties of glucose-6- phosphate dehydrogenase from sheep brain cortex, Türk Biyokimya Dergisi [Turkish Journal of Biochemistry–Turk J Biochem] 2012; 37 (4) ; 340–347</li> |
− | <li class="smallp"> | + | <li class="smallp">H. Stefania, M. Katy, C. Carlo, M. Morena, D. Franco, 6-Phosphogluconate Dehydrogenase Mechanism EVIDENCE FOR ALLOSTERIC MODULATION BY SUBSTRATE, J Biol Chem. 2010 Jul 9; 285(28): 21366–21371.</li> |
− | <li class="smallp">K. Nielsen, P.G. Sørensen, F. Hynne, H. | + | <li class="smallp">K. Nielsen, P.G. Sørensen, F. Hynne, H. G. Busse, Sustained oscillations in glycolysis: an experimental and theoretical study of chaotic and complex periodic behavior and of quenching of simple oscillations, Biophysical Chemistry 72 (1998) 49–62</li> |
<li class="smallp">UniProtKB - A0RV30 from web : https://www.uniprot.org/uniprot/A0RV30</li> | <li class="smallp">UniProtKB - A0RV30 from web : https://www.uniprot.org/uniprot/A0RV30</li> | ||
</ol> | </ol> |
Revision as of 16:18, 16 October 2018