Line 5: | Line 5: | ||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> | <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> | ||
<link rel="stylesheet" href="https://2018.igem.org/Template:TJU_China/default_CSS?action=raw&ctype=text/css" type="text/css"> | <link rel="stylesheet" href="https://2018.igem.org/Template:TJU_China/default_CSS?action=raw&ctype=text/css" type="text/css"> | ||
− | + | ||
<link rel="stylesheet" href="https://2018.igem.org/Template:TJU_China/nav_css?action=raw&ctype=text/css" type="text/css"> | <link rel="stylesheet" href="https://2018.igem.org/Template:TJU_China/nav_css?action=raw&ctype=text/css" type="text/css"> | ||
+ | <style> | ||
+ | .head { | ||
+ | font-size: 35px; | ||
+ | color: #4e72b8; | ||
+ | text-align: center; | ||
+ | margin-top: 150px; | ||
+ | } | ||
+ | |||
+ | .subhead { | ||
+ | font-size: 25px; | ||
+ | text-align: center; | ||
+ | margin-top: 50px; | ||
+ | line-height: 1.5; | ||
+ | } | ||
+ | |||
+ | .title { | ||
+ | font-size: 30px; | ||
+ | color: #4e72b8; | ||
+ | text-align: left; | ||
+ | margin-top: 50px; | ||
+ | margin-left: 10%; | ||
+ | |||
+ | } | ||
+ | |||
+ | .subtitle { | ||
+ | font-size: 25px; | ||
+ | color: #4e72b8; | ||
+ | text-align: left; | ||
+ | margin-top: 50px; | ||
+ | margin-left: 10%; | ||
+ | } | ||
+ | |||
+ | .word { | ||
+ | font-size: 20px; | ||
+ | margin-left: 10%; | ||
+ | margin-right: 10%; | ||
+ | text-align: left; | ||
+ | margin-top: 50px; | ||
+ | line-height: 1.5; | ||
+ | } | ||
+ | /* .equation { | ||
+ | float: left; | ||
+ | font-size: 20px; | ||
+ | margin-left: 30%; | ||
+ | margin-right: 10%; | ||
+ | text-align: center; | ||
+ | margin-top: 30px; | ||
+ | line-height: 1.5; | ||
+ | } | ||
+ | .number{ | ||
+ | float: left; | ||
+ | font-size: 20px; | ||
+ | margin-top: 40px; | ||
+ | } */ | ||
+ | .figure{ | ||
+ | font-size: 15px; | ||
+ | text-align: center; | ||
+ | margin-top: 20px; | ||
+ | line-height: 1.5; | ||
+ | } | ||
+ | .pic{ | ||
+ | margin-left: 10%; | ||
+ | margin-right: 10%; | ||
+ | width: 80%; | ||
+ | margin-top: 30px; | ||
+ | } | ||
+ | img{ | ||
+ | width: 100%; | ||
+ | height: auto; | ||
+ | } | ||
+ | </style> | ||
</head> | </head> | ||
Line 84: | Line 155: | ||
HP | HP | ||
</a> | </a> | ||
− | <ul class="drop menu3" > | + | <ul class="drop menu3"> |
<li> | <li> | ||
<a href="https://2018.igem.org/Team:TJU_China/Human_Practices">Human Practices</a> | <a href="https://2018.igem.org/Team:TJU_China/Human_Practices">Human Practices</a> | ||
Line 118: | Line 189: | ||
<div style=" margin-top:28px;z-index:10; border-top: solid #4e72b8 2px;width: 100%; position: fixed;"></div> | <div style=" margin-top:28px;z-index:10; border-top: solid #4e72b8 2px;width: 100%; position: fixed;"></div> | ||
− | + | <div class="head">Dynamic Model of Heavy Metal Detection Biosensor</div> | |
− | + | <div class="subhead">Minghui Yin,Sherry Dongqi Bao<br>TianJin University<br>October 15,2018</div> | |
− | + | <div class="title">1 Introduction</div> | |
− | + | <div class="word">Modeling is a powerful tool in synthetic biology. It provides us with a necessary engineering approach to characterize our pathways | |
− | + | quantitatively and predict their performance,thus help us test and modify our design.Through the dynamic model of heavy-metal detection biosensor,we hope to gain insights into the characteristics of our whole circuit's dynamics. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</div> | </div> | ||
− | + | <div class="title">2 Methods</div> | |
− | + | <div class="subtitle">2.1 Analysis of metabolic pathways</div> | |
− | <div class=" | + | <div class="pic"><img src="https://static.igem.org/mediawiki/2018/0/01/T--TJU_China--y1.png"></div> |
− | + | <div class="figure">Figure 1: Metabolic pathways related to plasmid#1</div> | |
− | <div class=" | + | <div class="word">At the beginning, on the plasmid#1, the promoter $P_{arsR}$ isn't bound with ArsR,thus it is active.ArsR and smURFP are transcribed and translated under the control of the |
− | + | promoters $P_{arsR_{u}}$ and $P_{arsR_{d}}$,with subscript u and d representing upstream and downstream separately.The subscript l of smURFP in the equation means leaky expression without | |
− | + | the expression of $As^{3+}$.As ArsR is expressed gradually,it will bind with the promoter $P_{arsR}$ and make it inactive.[1]</div> | |
− | + | <div class="pic"> | |
− | + | <img src="https://static.igem.org/mediawiki/2018/a/a6/T--TJU_China--m1.PNG"> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </ | + | |
</div> | </div> | ||
+ | <div class="word">On the plasmid#2,the fusion protein of dCas9 and RNAP(RNA polymerase) are produced after transcription and translation,and sgRNA is produced after transcription.<div> | ||
+ | |||
+ | |||
− | < | + | <script src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> |
− | + | <script type="text/x-mathjax-config"> | |
− | + | MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}}); | |
− | < | + | </script> |
− | + | </body> | |
− | < | + | <!-- <div> |
− | + | ||
− | + | ||
− | + | ||
− | + | $P_{arsR_{d}}$ | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | $As^{3+}$ | |
− | + | <div class="equation"> \(P_{J23104} \xrightarrow {k_{tx1}} P_{J23104} + mRNA_{ArsR}\)</div> <div class="number">(1)</div> | |
− | + | </div> --> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</html> | </html> |
Revision as of 18:20, 16 October 2018
<!DOCTYPE >
Dynamic Model of Heavy Metal Detection Biosensor
Minghui Yin,Sherry Dongqi Bao
TianJin University
October 15,2018
TianJin University
October 15,2018
1 Introduction
Modeling is a powerful tool in synthetic biology. It provides us with a necessary engineering approach to characterize our pathways
quantitatively and predict their performance,thus help us test and modify our design.Through the dynamic model of heavy-metal detection biosensor,we hope to gain insights into the characteristics of our whole circuit's dynamics.
2 Methods
2.1 Analysis of metabolic pathways
Figure 1: Metabolic pathways related to plasmid#1
At the beginning, on the plasmid#1, the promoter $P_{arsR}$ isn't bound with ArsR,thus it is active.ArsR and smURFP are transcribed and translated under the control of the
promoters $P_{arsR_{u}}$ and $P_{arsR_{d}}$,with subscript u and d representing upstream and downstream separately.The subscript l of smURFP in the equation means leaky expression without
the expression of $As^{3+}$.As ArsR is expressed gradually,it will bind with the promoter $P_{arsR}$ and make it inactive.[1]
On the plasmid#2,the fusion protein of dCas9 and RNAP(RNA polymerase) are produced after transcription and translation,and sgRNA is produced after transcription.