Difference between revisions of "Team:TJU China/Model"

Line 29: Line 29:
 
             margin-top: 50px;
 
             margin-top: 50px;
 
             margin-left: 10%;
 
             margin-left: 10%;
           
+
 
 
         }
 
         }
  
Line 48: Line 48:
 
             line-height: 1.5;
 
             line-height: 1.5;
 
         }
 
         }
         .equation {
+
 
 +
         /* .equation {
 
             float: left;
 
             float: left;
 
             font-size: 20px;
 
             font-size: 20px;
Line 61: Line 62:
 
             font-size: 20px;
 
             font-size: 20px;
 
             margin-top: 40px;
 
             margin-top: 40px;
         }
+
         } */
         .figure{
+
 
 +
         .figure {
 
             font-size: 15px;
 
             font-size: 15px;
 
             text-align: center;
 
             text-align: center;
Line 68: Line 70:
 
             line-height: 1.5;
 
             line-height: 1.5;
 
         }
 
         }
         .pic{
+
 
 +
         .pic {
 
             margin-left: 10%;
 
             margin-left: 10%;
 
             margin-right: 10%;
 
             margin-right: 10%;
Line 74: Line 77:
 
             margin-top: 30px;
 
             margin-top: 30px;
 
         }
 
         }
         img{
+
 
 +
         img {
 
             width: 100%;
 
             width: 100%;
 
             height: auto;
 
             height: auto;
Line 190: Line 194:
  
 
     <div class="head">Dynamic Model of Heavy Metal Detection Biosensor</div>
 
     <div class="head">Dynamic Model of Heavy Metal Detection Biosensor</div>
     <div class="subhead">Minghui Yin,Sherry Dongqi Bao<br>TianJin University<br>October 15,2018</div>
+
     <div class="subhead">Minghui Yin,Sherry Dongqi Bao
     <div class="title">1 Introduction</div>
+
        <br>TianJin University
     <div class="word">Modeling is a powerful tool in synthetic biology. It provides us with a necessary engineering approach to characterize our pathways
+
        <br>October 15,2018</div>
         quantitatively and predict their performance,thus help us test and modify our design.Through the dynamic model of heavy-metal detection biosensor,we hope to gain insights into the characteristics of our whole circuit's dynamics.
+
     <div class="title">1 Introduction</div>
 +
     <div class="word">Modeling is a powerful tool in synthetic biology. It provides us with a necessary engineering approach to characterize
 +
         our pathways quantitatively and predict their performance,thus help us test and modify our design.Through the dynamic
 +
        model of heavy-metal detection biosensor,we hope to gain insights into the characteristics of our whole circuit's
 +
        dynamics.
 
     </div>
 
     </div>
     <div class="title">2 Methods</div>
+
     <div class="title">2 Methods</div>
 
     <div class="subtitle">2.1 Analysis of metabolic pathways</div>
 
     <div class="subtitle">2.1 Analysis of metabolic pathways</div>
     <div class="pic"><img src="https://static.igem.org/mediawiki/2018/0/01/T--TJU_China--y1.png"></div>
+
     <div class="pic">
 +
        <img src="https://static.igem.org/mediawiki/2018/0/01/T--TJU_China--y1.png">
 +
    </div>
 
     <div class="figure">Figure 1: Metabolic pathways related to plasmid#1</div>
 
     <div class="figure">Figure 1: Metabolic pathways related to plasmid#1</div>
     <div class="word">At the beginning, on the plasmid#1, the promoter $P_{arsR}$ isn't bound with ArsR,thus it is active.ArsR and smURFP are transcribed and translated under the control of the  
+
     <div class="word">At the beginning, on the plasmid#1, the promoter $P_{arsR}$ isn't bound with ArsR,thus it is active.ArsR and smURFP are
        promoters $P_{arsR_{u}}$ and $P_{arsR_{d}}$,with subscript u and d representing upstream and downstream separately.The subscript l of smURFP in the equation means leaky expression without
+
        transcribed and translated under the control of the promoters $P_{arsR_{u}}$ and $P_{arsR_{d}}$,with subscript u
         the expression of $As^{3+}$.As ArsR is expressed gradually,it will bind with the promoter $P_{arsR}$ and make it inactive.[1]</div>
+
        and d representing upstream and downstream separately.The subscript l of smURFP in the equation means leaky expression
     <div>
+
         without the expression of $As^{3+}$.As ArsR is expressed gradually,it will bind with the promoter $P_{arsR}$ and
        <div class="equation"> \(P_{J23104} \xrightarrow {k_{tx1}}  P_{J23104} + mRNA_{ArsR}\)</div> <div class="number">(1)</div>
+
        make it inactive.[1]</div>
 +
     <div class="pic">
 +
        <img src="https://static.igem.org/mediawiki/2018/a/a6/T--TJU_China--m1.PNG">
 
     </div>
 
     </div>
      
+
     <div class="word">On the plasmid#2,the fusion protein of dCas9 and RNAP(RNA polymerase) are produced after transcription and translation,and
 +
        sgRNA is produced after transcription.
 +
        <div>
 +
            <div class="pic">
 +
                <img src="https://static.igem.org/mediawiki/2018/2/26/T--TJU_China--m2.png">
 +
            </div>
 +
            <div class="pic">
 +
                <img src="https://static.igem.org/mediawiki/2018/2/2b/T--TJU_China--2.png">
 +
            </div>
 +
            <div class="figure">Figure 2: Metabolic pathways related to dCas9/RNAP</div>
 +
            <div class="word">dCas9(*RNAP) can bind with its target DNA sequence without cutting, which is at the upstream of the promoter
 +
                $P_{arsR_{d}}$.Simulataneously,dCas9 can lead RNAP to bind with the promoter $P_{arsR_{d}}$ and enhance the
 +
                transcription of smURFP.However,because the promoter $P_{arsR_{d}}$ has already bound with ArsR,as a result,RNAP
 +
                can't bind with the promoter $P_{arsR_{d}}$. can’t bind with the promoter $P_{arsR_{d}}$.</div>
 +
            <div class="word">However,at the presence of $As^{3+}$,it can bind with ArsR,then dissociate ArsR and $P_{arsR_{d}}$,which makes the combination of RNAP and $P_{arsR_{d}}$ possible.</div>
  
    <script src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
+
 
    <script type="text/x-mathjax-config">
+
            <script src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
 +
            <script type="text/x-mathjax-config">
 
     MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
 
     MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
 
   </script>
 
   </script>
 
</body>
 
</body>
 
<!-- <div>
 
<!-- <div>
 +
<div class="pic"><img src=""></div>
 +
 +
  
 
$P_{arsR_{d}}$
 
$P_{arsR_{d}}$
  
 
$As^{3+}$
 
$As^{3+}$
 
+
<div class="equation">  \(P_{J23104} \xrightarrow {k_{tx1}}  P_{J23104} + mRNA_{ArsR}\)</div> <div class="number">(1)</div>
 
</div> -->
 
</div> -->
 +
 
</html>
 
</html>

Revision as of 18:32, 16 October 2018

<!DOCTYPE >

Dynamic Model of Heavy Metal Detection Biosensor
Minghui Yin,Sherry Dongqi Bao
TianJin University
October 15,2018
1 Introduction
Modeling is a powerful tool in synthetic biology. It provides us with a necessary engineering approach to characterize our pathways quantitatively and predict their performance,thus help us test and modify our design.Through the dynamic model of heavy-metal detection biosensor,we hope to gain insights into the characteristics of our whole circuit's dynamics.
2 Methods
2.1 Analysis of metabolic pathways
Figure 1: Metabolic pathways related to plasmid#1
At the beginning, on the plasmid#1, the promoter $P_{arsR}$ isn't bound with ArsR,thus it is active.ArsR and smURFP are transcribed and translated under the control of the promoters $P_{arsR_{u}}$ and $P_{arsR_{d}}$,with subscript u and d representing upstream and downstream separately.The subscript l of smURFP in the equation means leaky expression without the expression of $As^{3+}$.As ArsR is expressed gradually,it will bind with the promoter $P_{arsR}$ and make it inactive.[1]
On the plasmid#2,the fusion protein of dCas9 and RNAP(RNA polymerase) are produced after transcription and translation,and sgRNA is produced after transcription.
Figure 2: Metabolic pathways related to dCas9/RNAP
dCas9(*RNAP) can bind with its target DNA sequence without cutting, which is at the upstream of the promoter $P_{arsR_{d}}$.Simulataneously,dCas9 can lead RNAP to bind with the promoter $P_{arsR_{d}}$ and enhance the transcription of smURFP.However,because the promoter $P_{arsR_{d}}$ has already bound with ArsR,as a result,RNAP can't bind with the promoter $P_{arsR_{d}}$. can’t bind with the promoter $P_{arsR_{d}}$.
However,at the presence of $As^{3+}$,it can bind with ArsR,then dissociate ArsR and $P_{arsR_{d}}$,which makes the combination of RNAP and $P_{arsR_{d}}$ possible.