Difference between revisions of "Team:TJU China/Model"

Line 306: Line 306:
 
         </div>
 
         </div>
 
     </div>
 
     </div>
     <div class="figure">(a)sensitivity of ktx1             (b)sensitivity of ktl1</div>
+
     <div class="figure">(a)sensitivity of ktx1 (b)sensitivity of ktl1</div>
 +
 
 +
    <div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/8/8a/T--TJU_China--tx2.png">
 +
        </div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/4/41/T--TJU_China--tl2.png">
 +
        </div>
 +
    </div>
 +
    <div class="figure">(c)sensitivity of ktx2 (d)sensitivity of ktl2</div>
 +
 
 +
    <div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/1/1a/T--TJU_China--tx3.png">
 +
        </div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/3/30/T--TJU_China--tl3.png">
 +
        </div>
 +
    </div>
 +
    <div class="figure">(e)sensitivity of ktx3 (f)sensitivity of ktl3</div>
 +
 
 +
    <div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/0/03/T--TJU_China--tx4.png">
 +
        </div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/c/c9/T--TJU_China--b1.png">
 +
        </div>
 +
    </div>
 +
    <div class="figure">(g)sensitivity of ktx4 (h)sensitivity of kb1</div>
 +
 
 +
    <div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/6/69/T--TJU_China--b2.png">
 +
        </div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/3/33/T--TJU_China--b3.png">
 +
        </div>
 +
    </div>
 +
    <div class="figure">(i)sensitivity of kb2 (j)sensitivity of kb3</div>
 +
 
 +
    <div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/a/a9/T--TJU_China--b4.png">
 +
        </div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/2/2b/T--TJU_China--b5.png">
 +
        </div>
 +
    </div>
 +
    <div class="figure">(a)sensitivity of kb4 (b)sensitivity of kb5</div>
 +
 
 +
    <div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/e/e9/T--TJU_China--b6.png">
 +
        </div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/5/5b/T--TJU_China--d1.png">
 +
        </div>
 +
    </div>
 +
    <div class="figure">(c)sensitivity of kb6 (d)sensitivity of kd1</div>
 +
 
 +
    <div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/5/56/T--TJU_China--d2.png">
 +
        </div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/0/0a/T--TJU_China--d3.png">
 +
        </div>
 +
    </div>
 +
    <div class="figure">(e)sensitivity of kd2 (f)sensitivity of kd3</div>
 +
 
 +
    <div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/4/44/T--TJU_China--d4.png">
 +
        </div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/2/2f/T--TJU_China--d5.png">
 +
        </div>
 +
    </div>
 +
    <div class="figure">(g)sensitivity of kd4 (h)sensitivity of kd5</div>
 +
 
 +
    <div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/e/e4/T--TJU_China--d6.png">
 +
        </div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/3/35/T--TJU_China--d7.png">
 +
        </div>
 +
    </div>
 +
    <div class="figure">(a)sensitivity of kd6 (b)sensitivity of kd7</div>
 +
 
 +
    <div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/c/c5/T--TJU_China--d8.png">
 +
        </div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/4/44/T--TJU_China--d9.png">
 +
        </div>
 +
    </div>
 +
    <div class="figure">(c)sensitivity of kd8 (d)sensitivity of kd9</div>
 +
 
 +
    <div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/3/3d/T--TJU_China--d10.png">
 +
        </div>
 +
        <div class="doublepic">
 +
            <img src="https://static.igem.org/mediawiki/2018/7/7a/T--TJU_China--d11.png">
 +
        </div>
 +
    </div>
 +
    <div class="figure">(e)sensitivity of kd10 (f)sensitivity of kd11</div>
  
  

Revision as of 19:55, 16 October 2018

<!DOCTYPE >

Dynamic Model of Heavy Metal Detection Biosensor
Minghui Yin,Sherry Dongqi Bao
TianJin University
October 15,2018
1 Introduction
Modeling is a powerful tool in synthetic biology. It provides us with a necessary engineering approach to characterize our pathways quantitatively and predict their performance,thus help us test and modify our design.Through the dynamic model of heavy-metal detection biosensor,we hope to gain insights into the characteristics of our whole circuit's dynamics.
2 Methods
2.1 Analysis of metabolic pathways
Figure 1: Metabolic pathways related to plasmid#1
At the beginning, on the plasmid#1, the promoter $P_{arsR}$ isn't bound with ArsR,thus it is active.ArsR and smURFP are transcribed and translated under the control of the promoters $P_{arsR_{u}}$ and $P_{arsR_{d}}$,with subscript u and d representing upstream and downstream separately.The subscript l of smURFP in the equation means leaky expression without the expression of $As^{3+}$.As ArsR is expressed gradually,it will bind with the promoter $P_{arsR}$ and make it inactive.[1]
On the plasmid#2,the fusion protein of dCas9 and RNAP(RNA polymerase) are produced after transcription and translation,and sgRNA is produced after transcription.
Figure 2: Metabolic pathways related to dCas9/RNAP
dCas9(*RNAP) can bind with its target DNA sequence without cutting, which is at the upstream of the promoter $P_{arsR_{d}}$.Simulataneously,dCas9 can lead RNAP to bind with the promoter $P_{arsR_{d}}$ and enhance the transcription of smURFP.However,because the promoter $P_{arsR_{d}}$ has already bound with ArsR,as a result,RNAP can't bind with the promoter $P_{arsR_{d}}$. can’t bind with the promoter $P_{arsR_{d}}$.
However,at the presence of $As^{3+}$,it can bind with ArsR,then dissociate ArsR and $P_{arsR_{d}}$ , which makes the combination of RNAP and $P_{arsR_{d}}$ possible.
We then take degradation into account:
2.2 Analysis of ODEs
Applying mass action kinetic laws,we obtain the following set of differentiak equations.The several complexes involved:Ars$R^*$$P_{arsR}$,$As^{3+}$,${dCas9}^*$RNAP,${dCas9}^*$RNAP:sgRNA,${dCas9}^*$RNAP:${sgRNA}^*P_{arsR}$, are respectively abbreviated as $cplx_1$,$cplx_2$,$cplx_3$,$cplx_4$,$cplx_5$.
2.3 Simulation
Our simulation is based on two softwares: MATLAB (SimBiology Toolbox) and COPASI.
SimBiology Toolbox provides functions for modeling,simulating and analyzing biochemical pathways by the powerful computing engine of MATLAB.
Figure 3:Reaction map generated from the reaction sets above by SimBiology Toolbox
Figure 4:Simulation of smURFP production as a function of time by MATLAB Through the figure, we can see that the smURFP can gradually increase and reach a steady state after a period in the presence of arsenic ions.
2.4 Sensitivity
A good biosystem should have certain stability towards fluctuations in parameters.A good model should reflect this,and hence a test for robustness can be essential to the model.
Robustness analysis can also pinpoint which reactions/parameters that are important for obtaining a specific biological behavior.A simple measure for sensitivity is to measure the relative change of a system feaure due to a change in a parameter.As for our model,the feature can be the equilibrium concentration of the smURFP(C) for which the sensitivity(S) to a parameter k is:
After analysis, we found that the concentration of smURFP is relatively sensitive to parameters such as ktx3,ktl3,ktx4,kb4,kb6,kd2,kd5, kd6,kd7,kd8,kd11, etc. Among these parameters, except for the parameters that directly affect the production and degradation of smURFP,the rest of them are all related to dCas9-RNAP:sgRNA. It shows that our model reflects the critical role of dCas9-RNAP:sgRNA,which initially confirms our hypothesis:dCas0-RNAP can enhance transcription to increase the concentration of smURFP. However, due to the lack of previous modeling studies on dCas9-RNAP,some kinetic parameters may not be very accurate,and due to time limitation,we have not implemented experiments to measure related parameters,which may lead to some deviations in our model.
The sensitivity of each parameter is shown in the figures below.
(a)sensitivity of ktx1 (b)sensitivity of ktl1
(c)sensitivity of ktx2 (d)sensitivity of ktl2
(e)sensitivity of ktx3 (f)sensitivity of ktl3
(g)sensitivity of ktx4 (h)sensitivity of kb1
(i)sensitivity of kb2 (j)sensitivity of kb3
(a)sensitivity of kb4 (b)sensitivity of kb5
(c)sensitivity of kb6 (d)sensitivity of kd1
(e)sensitivity of kd2 (f)sensitivity of kd3
(g)sensitivity of kd4 (h)sensitivity of kd5
(a)sensitivity of kd6 (b)sensitivity of kd7
(c)sensitivity of kd8 (d)sensitivity of kd9
(e)sensitivity of kd10 (f)sensitivity of kd11