Difference between revisions of "Team:Aachen/Human Practices"

Line 1: Line 1:
 
{{Aachen/header}}
 
{{Aachen/header}}
 
<html>
 
<html>
<div class="container-fluid">
+
<div class="toppic" style="background-image: url(https://static.igem.org/mediawiki/2018/f/f6/T--Aachen--schoolproject.jpg
<div class="row">
+
">
<img src="http://placehold.it/2000x150" class="toppic">
+
</div
</div>
+
</div>
+
 
<section>
 
<section>
 
<div class="container">
 
<div class="container">
Line 16: Line 14:
 
</h2>
 
</h2>
 
<h3>Human Practices</h3>
 
<h3>Human Practices</h3>
 +
<p>click on on of the pic</p>
 +
<br>
 +
<br>
 
<img class="img-fluid" src="https://static.igem.org/mediawiki/2018/4/47/T--Aachen--HP.png"  alt="Human practices overview" usemap="#hpimg">
 
<img class="img-fluid" src="https://static.igem.org/mediawiki/2018/4/47/T--Aachen--HP.png"  alt="Human practices overview" usemap="#hpimg">
 
<map name="hpimg">
 
<map name="hpimg">
  <area shape="rect" coords="40,10,237,109" alt="Netherlands FDA" href="#" data-toggle="modal" data-target=".bd-example-modal-lg-x">
+
  <area shape="rect" coords="40,10,237,109" alt="Netherlands FDA" href="#FDA">
 
  <area shape="rect" coords="317,10,514,63" alt="Radio" href="#radio">
 
  <area shape="rect" coords="317,10,514,63" alt="Radio" href="#radio">
  <area shape="rect" coords="577,10,808,89" alt="Ingenieurspreis" href="http://localhost:8000/Team:Aachen/notebook#week11">
+
  <area shape="rect" coords="577,10,808,89" alt="Ingenieurspreis" href="#prize">
  <area shape="rect" coords="868,10,1073,109" alt="Meetups" href="https://www.w3schools.com/tags/tryit.asp?filename=tryhtml_areamap">
+
  <area shape="rect" coords="868,10,1073,109" alt="Meetups" href="#meetup">
  <area shape="rect" coords="289,147,542,246" alt="Jugend forsct" href="https://trello.com/b/koT9PLv7/it-hardware">
+
  <area shape="rect" coords="289,147,542,246" alt="Jugend forscht" href="#jugend">
  <area shape="rect" coords="598,147,787,204" alt="schulprojekt" href="http://localhost:8000/Team:Aachen/lab_overview">
+
  <area shape="rect" coords="598,147,787,204" alt="schulprojekt" href="#schule">
  <area shape="rect" coords="876,147,1065,246" alt="DAAD" href="http://localhost:8000/Team:Aachen/notebook#week11">
+
  <area shape="rect" coords="876,147,1065,246" alt="DAAD" href="#daad">
  <area shape="rect" coords="40,150,237,203" alt="Marchofscience" href="https://www.w3schools.com/tags/tryit.asp?filename=tryhtml_areamap">    
+
  <area shape="rect" coords="40,150,237,203" alt="Marchofscience" href="#march">    
 
</map>
 
</map>
 
<h3>Integrated Human Practices</h3>
 
 
<button type="button" class="btn btn-primary" data-toggle="modal" data-target="#exampleModalLong">
 
  Launch demo modal
 
</button>
 
 
<!-- Modal -->
 
<div class="modal fade" id="exampleModalLong" tabindex="-1" role="dialog" aria-labelledby="exampleModalLongTitle" aria-hidden="true">
 
  <div class="modal-dialog" role="document">
 
    <div class="modal-content">
 
      <div class="modal-header">
 
        <h5 class="modal-title" id="exampleModalLongTitle">Modal title</h5>
 
        <button type="button" class="close" data-dismiss="modal" aria-label="Close">
 
          <span aria-hidden="true">&times;</span>
 
        </button>
 
      </div>
 
      <div class="modal-body">
 
      <p>At first, we reviewed already available spectrometers. We started with looking into publications on cheap spectrometers<sup><a href="#pubspectro">[1]</a></sup>. The biggest problem with these is that they do not give actual construction data and are only result orientated. So we concentrated on open source diy designs. The ramanPi spectrometer caught our eye<sup><a href="#ramanpi">[2]</a></sup> and we based our design on it. The greatest upside is, that it was developed open source with a detailed construction documentation.
 
 
<br>
 
<br>
On the other hand, the ramanPi spectrometer project was never finished and validated. Also the design lacks adjustability for the optics that need focussing. This is the most important part of a spectrometer, because every small deviation of the optical components from their optimal position results in a drastic reduction in the spectral resolution.<br>
+
<br>
To solve this problems, we changed and optimized the original design in the following ways:<br>
+
<h3>Integrated Human Practices</h3>
- changed the position of the diffraction grating to put focus on the 600 nm wavelength<br>
+
- added adjustable mounts for the slit and CCD Array for focussing<br>
+
- changed the setup from a commercial 100$ slit to a 5$ razor blade magnet slit<br>
+
- added holder to mount other probes like cuvettes<br><br></p>
+
+
<div><h3>Layout</h3></div>
+
 
<hr>
 
<hr>
<p>The spectrometer is based on the Czerny-Turner configuration (see figure 2). It features a slit, a collimating mirror, a diffraction grating, a focusing mirror and a charge-coupled device (CCD) sensor. The CCD sensor sits on top of a small printed circuit board (PCB), that reduces noise levels and is connected to a Nucleo microcontroller. The Nucleo can then either be connected to a computer or a Rasberry Pi with a small touchscreen for a graphical output. The firmware and the graphical user interface is developed in the open source project TCD1304 by Esben Rossel<sup><a href="#esben">[3]</a></sup>.<br>
+
<br>
The Czerny-Turner setup is also used in commercial products, like the Ocean Optics HR4000. These devices start at around 4000$<sup><a href="#pricelist">[4]</a></sup> and house basically the same components as this diy version<sup><a href="#oceanopticsmanual">[5]</a></sup>. Companies offer their devices at such a high price, because they have mastered the alignment of these optics. The material cost of these is only a fraction of the price. </p>
+
<br>
<figure class="floated-m">
+
<img class="img-fluid" src="https://static.igem.org/mediawiki/2018/f/fa/T--Aachen--transmission_spectromete.jpg" alt="billy murray1">
+
<figcaption>
+
Figure 2: Czerny-Turner setup of spectrometer
+
</figcaption>
+
</figure>
+
      </div>
+
      <div class="modal-footer">
+
        <button type="button" class="btn btn-secondary" data-dismiss="modal">Close</button>
+
        <button type="button" class="btn btn-primary">Save changes</button>
+
      </div>
+
    </div>
+
  </div>
+
</div>
+
+
 
<img class="img-fluid" src="https://static.igem.org/mediawiki/2018/f/fd/T--Aachen--IHP-Timeline.png"  alt="Planets" usemap="#ihpimg">
 
<img class="img-fluid" src="https://static.igem.org/mediawiki/2018/f/fd/T--Aachen--IHP-Timeline.png"  alt="Planets" usemap="#ihpimg">
 
<map name="ihpimg">
 
<map name="ihpimg">
Line 89: Line 50:
 
</map>
 
</map>
 
 
<button type="button" class="btn btn-primary" >Large modal</button>
+
 
+
<div class="modal fade bd-example-modal-lg-x" tabindex="-1" role="dialog" aria-labelledby="myLargeModalLabel" aria-hidden="true">
+
<div class="accordion" id="accordionExample">
  <div class="modal-dialog modal-lg" role="document">
+
<div class="card" id="FDA">
<div class="modal-content">
+
<div class="card-header" id="headingOne">
  <h3>test</h3>
+
<h5 class="mb-0">
  When we looked for a spectrometer for our localized plasmon resonance sensing device, we either had the choice of using an expensive commercial 5000$ spectrometer or building one on on our own. We found many diy photometers but not alot of diy spectrometers. Photometers are far easier to built then a spectrometer, since only one specific wavelength is measured. This specificity though, does make them not as versatiale as spectrometers. For alot of applications like LSPR only spectrometers are applicable. So we decided to built one on our own.
+
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapseOne" aria-expanded="true" aria-controls="collapseOne">
We designed our spectrometer in a way that it can be used for other applications, not just LSPR sensing.
+
<h3>FDA</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapseOne" class="collapse show" aria-labelledby="headingOne" data-parent="#accordionExample">
 +
<div class="card-body" >
 +
When we looked for a spectrometer for our localized plasmon resonance sensing device, we either had the choice of using an expensive commercial 5000$ spectrometer or building one on on our own. We found many diy photometers but not alot of diy spectrometers. Photometers are far easier to built then a spectrometer, since only one specific wavelength is measured. This specificity though, does make them not as versatiale as spectrometers. For alot of applications like LSPR only spectrometers are applicable. So we decided to built one on our own.
 +
We designed our spectrometer in a way that it can be used for other applications, not just LSPR sensing.
 +
<br>
 +
</p>
 +
<figure class="floated-m">
 +
<img class="img-fluid" src="https://www.fillmurray.com/1000/300" alt="billy murray1">
 +
<figcaption>
 +
Figure 1: Our Spectrometer<sup><a href="#fig1">[5]</a></sup>
 +
</figcaption>
 +
</figure>
 +
<p>At first, we reviewed already available spectrometers. We started with looking into publications on cheap spectrometers<sup><a href="#pubspectro">[1]</a></sup>. The biggest problem with these is that they do not give actual construction data and are only result orientated. So we concentrated on open source diy designs. The ramanPi spectrometer caught our eye<sup><a href="#ramanpi">[2]</a></sup> and we based our design on it. The greatest upside is, that it was developed open source with a detailed construction documentation.
 +
<br>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card" id="radio">
 +
<div class="card-header" id="heading2 ">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse2" aria-expanded="false" aria-controls="collapse2">
 +
<h3>Radio</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse2"  class="collapse" aria-labelledby="heading2" data-parent="#accordionExample">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card" id="prize" >
 +
<div class="card-header" id="heading3 ">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse3" aria-expanded="false" aria-controls="collapse3">
 +
<h3>Prize</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse3"  class="collapse" aria-labelledby="heading3" data-parent="#accordionExample">
 +
<div class="card-body" >
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card" id="meetup">
 +
<div class="card-header" id="heading4 ">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse4" aria-expanded="false" aria-controls="collapse4">
 +
<h3>Meetups</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse4"  class="collapse" aria-labelledby="heading4" data-parent="#accordionExample">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card" id="jugend">
 +
<div class="card-header" id="heading5">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse5" aria-expanded="false" aria-controls="collapse5">
 +
<h3>Jugend</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse5"  class="collapse" aria-labelledby="heading5" data-parent="#accordionExample">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card" id="schule">
 +
<div class="card-header" id="heading6 ">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse6" aria-expanded="false" aria-controls="collapse6">
 +
<h3>Schule</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse6" class="collapse" aria-labelledby="heading6" data-parent="#accordionExample">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card" id="daad">
 +
<div class="card-header" id="heading7 ">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse7" aria-expanded="false" aria-controls="collapse7">
 +
<h3>DAAD</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse7" class="collapse" aria-labelledby="heading7" data-parent="#accordionExample">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card" id="march">
 +
<div class="card-header" id="heading8 ">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse8" aria-expanded="false" aria-controls="collapse8">
 +
<h3>March</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse8"  class="collapse" aria-labelledby="heading8" data-parent="#accordionExample">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
 +
 +
 +
 +
</div>
 
<br>
 
<br>
</p>
 
<figure class="floated-m">
 
<img class="img-fluid" src="https://www.fillmurray.com/1000/300" alt="billy murray1">
 
<figcaption>
 
Figure 1: Our Spectrometer<sup><a href="#fig1">[5]</a></sup>
 
</figcaption>
 
</figure>
 
<p>At first, we reviewed already available spectrometers. We started with looking into publications on cheap spectrometers<sup><a href="#pubspectro">[1]</a></sup>. The biggest problem with these is that they do not give actual construction data and are only result orientated. So we concentrated on open source diy designs. The ramanPi spectrometer caught our eye<sup><a href="#ramanpi">[2]</a></sup> and we based our design on it. The greatest upside is, that it was developed open source with a detailed construction documentation.
 
 
<br>
 
<br>
On the other hand, the ramanPi spectrometer project was never finished and validated. Also the design lacks adjustability for the optics that need focussing. This is the most important part of a spectrometer, because every small deviation of the optical components from their optimal position results in a drastic reduction in the spectral resolution.<br>
+
<h3>Integrated Human Practices</h3>
To solve this problems, we changed and optimized the original design in the following ways:<br>
+
- changed the position of the diffraction grating to put focus on the 600 nm wavelength<br>
+
- added adjustable mounts for the slit and CCD Array for focussing<br>
+
- changed the setup from a commercial 100$ slit to a 5$ razor blade magnet slit<br>
+
- added holder to mount other probes like cuvettes<br><br></p>
+
+
<div><h3>Layout</h3></div>
+
 
<hr>
 
<hr>
<p>The spectrometer is based on the Czerny-Turner configuration (see figure 2). It features a slit, a collimating mirror, a diffraction grating, a focusing mirror and a charge-coupled device (CCD) sensor. The CCD sensor sits on top of a small printed circuit board (PCB), that reduces noise levels and is connected to a Nucleo microcontroller. The Nucleo can then either be connected to a computer or a Rasberry Pi with a small touchscreen for a graphical output. The firmware and the graphical user interface is developed in the open source project TCD1304 by Esben Rossel<sup><a href="#esben">[3]</a></sup>.<br>
+
<br>
The Czerny-Turner setup is also used in commercial products, like the Ocean Optics HR4000. These devices start at around 4000$<sup><a href="#pricelist">[4]</a></sup> and house basically the same components as this diy version<sup><a href="#oceanopticsmanual">[5]</a></sup>. Companies offer their devices at such a high price, because they have mastered the alignment of these optics. The material cost of these is only a fraction of the price. </p>
+
<br>
<figure class="floated-m">
+
<div class="accordion" id="accordionExample1">
<img class="img-fluid" src="https://static.igem.org/mediawiki/2018/f/fa/T--Aachen--transmission_spectromete.jpg" alt="billy murray1">
+
<div class="card">
<figcaption>
+
<div class="card-header" id="headingOne FDA1">
Figure 2: Czerny-Turner setup of spectrometer
+
<h5 class="mb-0">
</figcaption>
+
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapseOne" aria-expanded="true" aria-controls="collapseOne">
</figure>
+
<h3>FDA</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapseOne" class="collapse show" aria-labelledby="headingOne" data-parent="#accordionExample1">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing device, we either had the choice of using an expensive commercial 5000$ spectrometer or building one on on our own. We found many diy photometers but not alot of diy spectrometers. Photometers are far easier to built then a spectrometer, since only one specific wavelength is measured. This specificity though, does make them not as versatiale as spectrometers. For alot of applications like LSPR only spectrometers are applicable. So we decided to built one on our own.
 +
We designed our spectrometer in a way that it can be used for other applications, not just LSPR sensing.
 +
<br>
 +
</p>
 +
<figure class="floated-m">
 +
<img class="img-fluid" src="https://www.fillmurray.com/1000/300" alt="billy murray1">
 +
<figcaption>
 +
Figure 1: Our Spectrometer<sup><a href="#fig1">[5]</a></sup>
 +
</figcaption>
 +
</figure>
 +
<p>At first, we reviewed already available spectrometers. We started with looking into publications on cheap spectrometers<sup><a href="#pubspectro">[1]</a></sup>. The biggest problem with these is that they do not give actual construction data and are only result orientated. So we concentrated on open source diy designs. The ramanPi spectrometer caught our eye<sup><a href="#ramanpi">[2]</a></sup> and we based our design on it. The greatest upside is, that it was developed open source with a detailed construction documentation.
 +
<br>
 +
</div>
 +
</div>
 
</div>
 
</div>
  </div>
+
 +
<div class="card">
 +
<div class="card-header" id="heading2 radio1">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse2" aria-expanded="false" aria-controls="collapse2">
 +
<h3>Radio</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse2"  class="collapse" aria-labelledby="heading2" data-parent="#accordionExample1">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card">
 +
<div class="card-header" id="heading3 prize">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse3" aria-expanded="false" aria-controls="collapse3">
 +
<h3>Prize</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse3"  class="collapse" aria-labelledby="heading3" data-parent="#accordionExample1">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card">
 +
<div class="card-header" id="heading4 meetup">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse4" aria-expanded="false" aria-controls="collapse4">
 +
<h3>Meetups</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse4"  class="collapse" aria-labelledby="heading4" data-parent="#accordionExample1">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card">
 +
<div class="card-header" id="heading5 jugend">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse5" aria-expanded="false" aria-controls="collapse5">
 +
<h3>Jugend</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse5"  class="collapse" aria-labelledby="heading5" data-parent="#accordionExample1">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card">
 +
<div class="card-header" id="heading6 schule">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse6" aria-expanded="false" aria-controls="collapse6">
 +
<h3>Schule</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse6" class="collapse" aria-labelledby="heading6" data-parent="#accordionExample1">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card">
 +
<div class="card-header" id="heading7 DAAD">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse7" aria-expanded="false" aria-controls="collapse7">
 +
<h3>DAAD</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse7" class="collapse" aria-labelledby="heading7" data-parent="#accordionExample1">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card">
 +
<div class="card-header" id="heading8 march">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse8" aria-expanded="false" aria-controls="collapse8">
 +
<h3>March</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse8"  class="collapse" aria-labelledby="heading8" data-parent="#accordionExample1">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card">
 +
<div class="card-header" id="heading9 march">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse9" aria-expanded="false" aria-controls="collapse9">
 +
<h3>March</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse9"  class="collapse" aria-labelledby="heading9" data-parent="#accordionExample1">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card">
 +
<div class="card-header" id="heading10 march">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse10" aria-expanded="false" aria-controls="collapse10">
 +
<h3>March</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse10"  class="collapse" aria-labelledby="heading10" data-parent="#accordionExample1">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card">
 +
<div class="card-header" id="heading11 march">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse11" aria-expanded="false" aria-controls="collapse11">
 +
<h3>March</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse11"  class="collapse" aria-labelledby="heading11" data-parent="#accordionExample1">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="card">
 +
<div class="card-header" id="heading12 march">
 +
<h5 class="mb-0">
 +
<button class="btn btn-link" type="button" data-toggle="collapse" data-target="#collapse12" aria-expanded="false" aria-controls="collapse12">
 +
<h3>March</h3>
 +
</button>
 +
</h5>
 +
</div>
 +
<div id="collapse12"  class="collapse" aria-labelledby="heading12" data-parent="#accordionExample1">
 +
<div class="card-body">
 +
When we looked for a spectrometer for our localized plasmon resonance sensing
 +
</div>
 +
</div>
 +
</div>
 +
 
</div>
 
</div>
 
+
+
 
+
+
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
</section>
+
</section>
  
 
</html>
 
</html>
 
{{Aachen/footer}}
 
{{Aachen/footer}}

Revision as of 00:16, 17 October 2018

human practices


Human Practices

Human Practices

click on on of the pic



Human practices overview Netherlands FDA Radio Ingenieurspreis Meetups Jugend forscht schulprojekt DAAD Marchofscience

Integrated Human Practices




Planets Finding the idea Grözinger Juelich FZ Helsinki Prof Bot Wiechert Spanischer Dario LabCall Florian Merget Ahmed Mourran Dimitry Chigrin LabCall
When we looked for a spectrometer for our localized plasmon resonance sensing device, we either had the choice of using an expensive commercial 5000$ spectrometer or building one on on our own. We found many diy photometers but not alot of diy spectrometers. Photometers are far easier to built then a spectrometer, since only one specific wavelength is measured. This specificity though, does make them not as versatiale as spectrometers. For alot of applications like LSPR only spectrometers are applicable. So we decided to built one on our own. We designed our spectrometer in a way that it can be used for other applications, not just LSPR sensing.

billy murray1
Figure 1: Our Spectrometer[5]

At first, we reviewed already available spectrometers. We started with looking into publications on cheap spectrometers[1]. The biggest problem with these is that they do not give actual construction data and are only result orientated. So we concentrated on open source diy designs. The ramanPi spectrometer caught our eye[2] and we based our design on it. The greatest upside is, that it was developed open source with a detailed construction documentation.

When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing


Integrated Human Practices




When we looked for a spectrometer for our localized plasmon resonance sensing device, we either had the choice of using an expensive commercial 5000$ spectrometer or building one on on our own. We found many diy photometers but not alot of diy spectrometers. Photometers are far easier to built then a spectrometer, since only one specific wavelength is measured. This specificity though, does make them not as versatiale as spectrometers. For alot of applications like LSPR only spectrometers are applicable. So we decided to built one on our own. We designed our spectrometer in a way that it can be used for other applications, not just LSPR sensing.

billy murray1
Figure 1: Our Spectrometer[5]

At first, we reviewed already available spectrometers. We started with looking into publications on cheap spectrometers[1]. The biggest problem with these is that they do not give actual construction data and are only result orientated. So we concentrated on open source diy designs. The ramanPi spectrometer caught our eye[2] and we based our design on it. The greatest upside is, that it was developed open source with a detailed construction documentation.

When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing
When we looked for a spectrometer for our localized plasmon resonance sensing