Difference between revisions of "Team:TJU China/Demonstrate"

Line 164: Line 164:
 
                     HP
 
                     HP
 
                 </a>
 
                 </a>
                 <ul class="drop menu3" >
+
                 <ul class="drop menu3">
 
                     <li>
 
                     <li>
 
                         <a href="https://2018.igem.org/Team:TJU_China/Human_Practices">Human Practices</a>
 
                         <a href="https://2018.igem.org/Team:TJU_China/Human_Practices">Human Practices</a>
Line 227: Line 227:
 
             <img src="https://static.igem.org/mediawiki/2018/5/5b/T--TJU_China--d1.1.png">
 
             <img src="https://static.igem.org/mediawiki/2018/5/5b/T--TJU_China--d1.1.png">
 
         </div>
 
         </div>
         <div class="figure"><b>Figure1:</b>The result of nucleic acid gel electrophoresis of Bba-J33201 after PCR. Lane M, Marker. Lane 1-6,Bba-J33201</div>
+
         <div class="figure">
         <div><img src="https://static.igem.org/mediawiki/2018/d/d1/T--TJU_China--d1.2.png"></div>
+
            <b>Figure1:</b>The result of nucleic acid gel electrophoresis of Bba-J33201 after PCR. Lane M, Marker. Lane 1-6,Bba-J33201</div>
         <div class="figure"><b>Figure2:</b>The result of nucleic acid gel electrophoresis of smURFP after PCR.LaneM, Marker. Lane1-8, smURFP</div>
+
         <div>
         <div><img src="https://static.igem.org/mediawiki/2018/6/66/T--TJU_China--d1.3.png"></div>
+
            <img src="https://static.igem.org/mediawiki/2018/d/d1/T--TJU_China--d1.2.png">
         <div class="figure"><b>Figure3:</b>The result of nucleic acid gel electrophoresis after overlapping of J23104 and ArsR Protein. LaneM, Marker. Lane 1,ArsR Promoter;Lane 2-5:J23104+ArsR Protein.</div>
+
        </div>
         <div><img src="https://static.igem.org/mediawiki/2018/5/5e/T--TJU_China--d1.4.png"></div>
+
         <div class="figure">
         <div class="figure"><b>Figure4:</b>The result of nucleic acid gel electrophoresis after overlapping of ArsR Promoter and smURFP. LaneM, Marker. Lane 1, smURFP. Lane 2-4,ArsR Promoter+smURFP</div>
+
            <b>Figure2:</b>The result of nucleic acid gel electrophoresis of smURFP after PCR.LaneM, Marker. Lane1-8, smURFP</div>
         <div><img src="https://static.igem.org/mediawiki/2018/5/54/T--TJU_China--d1.5.png"></div>
+
         <div>
         <div class="figure"><b>Figure5:</b>Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2, Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane 4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII and BamHI. Lane 7, Plasmid ArS. Lane 8, Plasmid ArS single digestion with BamHI. Lane 9, Plasmid ArS double digestion with AatII and BamHI.</div>
+
            <img src="https://static.igem.org/mediawiki/2018/6/66/T--TJU_China--d1.3.png">
         <div><img src="https://static.igem.org/mediawiki/2018/3/3a/T--TJU_China--d1.6.png"></div>
+
        </div>
         <div class="figure"><b>Figure6:</b>Double digestion of pKM586 with AatII and BamHI. lane M, Marker. Lane 1,Plasmid pKM586. Lane 2, single digestion with BamHI. Lane 3, Plasmid pKM586 after double enzyme digestion</div>
+
         <div class="figure">
         <div><img src="https://static.igem.org/mediawiki/2018/9/9c/T--TJU_China--d1.7.png"></div>
+
            <b>Figure3:</b>The result of nucleic acid gel electrophoresis after overlapping of J23104 and ArsR Protein. LaneM,
         <div class="figure"><b>Figure7:</b>Double digestion of pKM586 with AatII and BamHI. LaneM, Marker. Lane 1,Plasmid pKM586. Lane 2, Plasmid pKM586 after double enzyme digestion</div>
+
            Marker. Lane 1,ArsR Promoter;Lane 2-5:J23104+ArsR Protein.</div>
 +
         <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/5/5e/T--TJU_China--d1.4.png">
 +
        </div>
 +
         <div class="figure">
 +
            <b>Figure4:</b>The result of nucleic acid gel electrophoresis after overlapping of ArsR Promoter and smURFP. LaneM,
 +
            Marker. Lane 1, smURFP. Lane 2-4,ArsR Promoter+smURFP</div>
 +
         <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/5/54/T--TJU_China--d1.5.png">
 +
        </div>
 +
         <div class="figure">
 +
            <b>Figure5:</b>Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2,
 +
            Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane
 +
            4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII
 +
            and BamHI. Lane 7, Plasmid ArS. Lane 8, Plasmid ArS single digestion with BamHI. Lane 9, Plasmid ArS double digestion
 +
            with AatII and BamHI.</div>
 +
         <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/3/3a/T--TJU_China--d1.6.png">
 +
        </div>
 +
         <div class="figure">
 +
            <b>Figure6:</b>Double digestion of pKM586 with AatII and BamHI. lane M, Marker. Lane 1,Plasmid pKM586. Lane 2, single
 +
            digestion with BamHI. Lane 3, Plasmid pKM586 after double enzyme digestion</div>
 +
         <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/9/9c/T--TJU_China--d1.7.png">
 +
        </div>
 +
         <div class="figure">
 +
            <b>Figure7:</b>Double digestion of pKM586 with AatII and BamHI. LaneM, Marker. Lane 1,Plasmid pKM586. Lane 2, Plasmid
 +
            pKM586 after double enzyme digestion</div>
  
 
     </div>
 
     </div>
 
     <div class="group" id="group2" style="display:none;">
 
     <div class="group" id="group2" style="display:none;">
         <div class="head">Targeted delivery of sgRNA/Cas9 complex</div>
+
 
 +
         <div class="grouphead">Targeted delivery of sgRNA/Cas9 complex</div>
 +
        <div class="contentword">In order to reach a new gene detection in a high-throughput technique, CRISPR-Cas12a system is modified to chips
 +
            which have been tiled with a layer of Janus (the hydrophobic protein designed by our team Tianjin in 2015) in
 +
            advance. After our first step on the assembly of FnCas12a and crRNA was taken,we successfully tested sequence-specific
 +
            cleavage activity on plasmid and trans-cleavage activity on ssDNA. With tremendous trails, we optimized cleavage
 +
            protocol of both cis and trans cleavage. Last but not least, for achieving high-throughput detection on chips,
 +
            we dried the Janus on the chip, then incubated Cas12a protein and crRNA complex, and finally, the fluorescence
 +
            probe was cut and detected by fluorescence microscope. With the help of Janus, we were glad that higher fluorescence
 +
            values were detected under the condition of a smaller amount of materials.</div>
 
         <div>
 
         <div>
             <img src="">
+
 
 +
             <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/b/b7/T--TJU_China--d2.1.png">
 +
            </div>
 +
            <div class="figure">
 +
                <b>Figure1.</b>Result of protein expression and purification of FnCas12a. (A) SDS-PAGE gel of result of affinity chromatography (Ni-NTA) result. Lane M, marker. Lane 1, before washing by Buffer A. Lane 2, after washing by Buffer A. Lane 3, before elution by Buffer B. Lane 4, after elution by Buffer B. Buffer A (50 mM Tris-HCl (pH8.0), 1.5 M NaCl, 5% glycerol, 30 mM imidazole). Buffer B (50 mM Tris-HCl (pH8.0), 1.5 M NaCl,1 mM DTT and 5% glycerol, 600 mM imidazole). (B) SDS-PAGE gel of result of ion exchange. Lane M, marker. Lane 1, purified FnCas12a. (C) SDS-PAGE gel of result of gel filtration. Lane M, marker. Lane 1, purified FnCas12a. (D) The result of ion-exchange chromatography program. (C) The result of gel filtration program.
 +
            </div>
 +
 
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/1/11/T--TJU_China--d2.2.png">
 +
            </div>
 +
            <div class="figure">
 +
                <b>Figure2.</b>Result of assembly of crRNA. Lane M, marker. Lane 1, crRNA assembled into 43 nucleotides.
 +
            </div>
 +
 
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/8/86/T--TJU_China--d2.3.png">
 +
            </div>
 +
            <div class="figure">
 +
                <b>Figure3.</b>Result of sequence-specific plasmid cleavage. Lane 1, plasmid GFP. Lane 2, cleavage plasmid with BamH1 enzyme. Lane 3, cleavage plasmid with Fncas12a,crRNA-1 and crRNA-2. Lane 4, cleavage plasmid with Fncas12a and crRNA-1. Lane 5, cleavage plasmid with Fncas12a and crRNA-2.
 +
            </div>
 +
 
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/3/3d/T--TJU_China--d2.4.png">
 +
            </div>
 +
            <div class="figure">
 +
                <b>Figure4.</b>Optimization of cleavage protocol. (A) Line 1, GFP plasmid. Line 2, cleavage plasmid with BamH1 enzyme. Line3-8, cleavage according to table (B). (B) Experiment design.
 +
            </div>
 +
 
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/e/ec/T--TJU_China--d2.5.png">
 +
            </div>
 +
            <div class="figure">
 +
                <b>Figure5.</b>Optimization of cleavage protocol. (A) Line 1, GFP plasmid. Line 2, cleavage plasmid with BamH1 enzyme. Line3-7, cleavage according to tableB. (B) Experiment design.
 +
            </div>
 +
 
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/6/69/T--TJU_China--d2.6.png">
 +
            </div>
 +
            <div class="figure">
 +
                <b>Figure6.</b>Result of specific-sequence cleavage after Optimization. Lane 1, GFP plasmid. Lane 2, BamH1 cleavage. Lane 3, cleavage according to: crRNA:FnCas12a:plasmid = 10:10:1. Lane 4, cleavage according to: crRNA:FnCas12a:Plasmid = 10:10:1.
 +
            </div>
 +
 
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--d2.7.png">
 +
            </div>
 +
            <div class="figure">
 +
                <b>Figure7.</b> The FnCas12a trans-cleavage activity on ssDNA. Lane M, marker. Lane 1, dsDNA about 40 bps. Lane 2, ssDNA about 40 nts. Lane 3, cleavage according to: dsDNA : ssDNA = 1:20. Lane 4, cleavage according to: dsDNA : ssDNA = 1:40. Lane 6, cleavage according to: dsDNA : ssDNA = 1:100. Lane 7, cleavage according to: dsDNA : ssDNA = 1:125.
 +
            </div>
 +
 
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/a/a7/T--TJU_China--d2.8.png">
 +
            </div>
 +
            <div class="figure">
 +
                <b>Figure8.</b>Optimize trans-cleavage of fluorescent probe.
 +
            </div>
 +
 
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/e/e8/T--TJU_China--d2.9.png">
 +
            </div>
 +
            <div class="figure">
 +
                <b>Figure9.</b>Cleavage on chip. (A) Cleavage design of experimental group and control group. (B) Result of cleavage according to table A with and without Janus (a kind of hydrophobic protein designed by our team TJUSLS in 2015 and won best new application prize).
 +
            </div>
 +
 
 +
 
 
         </div>
 
         </div>
    </div>
+
 
    <div class="group" id="group3" style="display:none;">
+
 
        <div class="head">Improved sensitivity of metal iron detection based on dCas9 system</div>
+
 
        <div>
+
        <div class="group" id="group3" style="display:none;">
            <img src="">
+
            <div class="grouphead">Improved sensitivity of metal iron detection based on dCas9 system</div>
 +
 
 +
            <div>
 +
                <img src="">
 +
            </div>
 
         </div>
 
         </div>
    </div>
 
  
    <script>
+
        <script>
        window.onload = function () {
+
            window.onload = function () {
            var btn11 = document.getElementById("btn11");
+
                var btn11 = document.getElementById("btn11");
            var g1 = document.getElementById("group1");
+
                var g1 = document.getElementById("group1");
            var btn12 = document.getElementById("btn12");
+
                var btn12 = document.getElementById("btn12");
            var g2 = document.getElementById("group2");
+
                var g2 = document.getElementById("group2");
            var btn13 = document.getElementById("btn13");
+
                var btn13 = document.getElementById("btn13");
            var g3 = document.getElementById("group3");
+
                var g3 = document.getElementById("group3");
            function allclose() {
+
                function allclose() {
                g1.style.display = 'none';
+
                    g1.style.display = 'none';
                g2.style.display = 'none';
+
                    g2.style.display = 'none';
                g3.style.display = 'none';
+
                    g3.style.display = 'none';
            }
+
                }
            btn11.onclick = function () {
+
                btn11.onclick = function () {
                if (g1.style.display == 'none') {
+
                    if (g1.style.display == 'none') {
                    allclose();
+
                        allclose();
                    g1.style.display = 'block';
+
                        g1.style.display = 'block';
 +
                    }
 +
                    // else {
 +
                    //    allclose();
 +
                    // }
 
                 }
 
                 }
                // else {
 
                //    allclose();
 
                // }
 
            }
 
  
  
            btn12.onclick = function () {
+
                btn12.onclick = function () {
                if (g2.style.display == 'none') {
+
                    if (g2.style.display == 'none') {
                    allclose();
+
                        allclose();
                    g2.style.display = 'block';
+
                        g2.style.display = 'block';
 +
                    }
 +
                    // else {
 +
                    //    allclose();
 +
                    // }
 
                 }
 
                 }
                // else {
 
                //    allclose();
 
                // }
 
            }
 
  
  
            btn13.onclick = function () {
+
                btn13.onclick = function () {
                if (g3.style.display == 'none') {
+
                    if (g3.style.display == 'none') {
                    allclose();
+
                        allclose();
                    g3.style.display = 'block';
+
                        g3.style.display = 'block';
 +
                    }
 +
                    // else {
 +
                    //    allclose();
 +
                    // }
 
                 }
 
                 }
                // else {
 
                //    allclose();
 
                // }
 
 
             }
 
             }
         }
+
         </script>
    </script>
+
  
 
</body>
 
</body>

Revision as of 01:46, 17 October 2018

<!DOCTYPE > home

Enhanced sensitivity of metal iron detection based on dCas9 system
In view of the current serious pollution problems, we focus on the pollution of heavy metal ions. Only by detecting heavy metal ions quickly and accurately can we prevent pollution in a timely manner. To this end, we started with a arsenic ion, combined with the achievements of the 2006 iGEM team (iGEM2006_Edinburgh) in order to construct a circuit dedicated to the detection of arsenic ions, which consists of Promoter J23104, ArsR Protein, Promoter ArsR, smURFP. We first ligated these fragments by overlap, then ligated them to the pKM586 plasmid by double restriction enzymes, and then transformed them into E.coli BL21. Since we think this loop can not be completed to meet our requirements, we want to make this loop more sensitive. Therefore, we noticed that dcas9 in the CRISPR-Cas system has an enhanced transcriptional effect, thus amplifying the effect of arsenic ions on the loop. In the plasmid of dCas9, we need to cut the two segments of the plasmid with BsaI enzyme, then connect the spacer we designed to target dCas9 to the corresponding gene, and then we import it with another plasmid E.coli BL21 to complete the enhancement of our arsenic sensing circuit by dCas9.
Figure1:The result of nucleic acid gel electrophoresis of Bba-J33201 after PCR. Lane M, Marker. Lane 1-6,Bba-J33201
Figure2:The result of nucleic acid gel electrophoresis of smURFP after PCR.LaneM, Marker. Lane1-8, smURFP
Figure3:The result of nucleic acid gel electrophoresis after overlapping of J23104 and ArsR Protein. LaneM, Marker. Lane 1,ArsR Promoter;Lane 2-5:J23104+ArsR Protein.
Figure4:The result of nucleic acid gel electrophoresis after overlapping of ArsR Promoter and smURFP. LaneM, Marker. Lane 1, smURFP. Lane 2-4,ArsR Promoter+smURFP
Figure5:Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2, Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane 4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII and BamHI. Lane 7, Plasmid ArS. Lane 8, Plasmid ArS single digestion with BamHI. Lane 9, Plasmid ArS double digestion with AatII and BamHI.
Figure6:Double digestion of pKM586 with AatII and BamHI. lane M, Marker. Lane 1,Plasmid pKM586. Lane 2, single digestion with BamHI. Lane 3, Plasmid pKM586 after double enzyme digestion
Figure7:Double digestion of pKM586 with AatII and BamHI. LaneM, Marker. Lane 1,Plasmid pKM586. Lane 2, Plasmid pKM586 after double enzyme digestion