Difference between revisions of "Team:Peking/Project"

Line 6: Line 6:
 
     <head>
 
     <head>
 
         <!--- Basic Page Needs========================================================================= -->
 
         <!--- Basic Page Needs========================================================================= -->
         <meta charset="utf-8"/>
+
         <meta charset="utf-8">
        <title></title>
+
            <title>Team</title>
        <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" />
+
            <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" />
        <meta name="description" content="Wiki of Peking iGEM 2018" />
+
            <meta name="description" content="Wiki of Peking iGEM 2018" />
        <meta name="author" content="Peking iGEM"/>
+
            <meta name="author" content="Peking iGEM">
        <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+
                <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
        <!-- Mobile Specific Metas===================================================================== -->
+
                <!Mobile Specific Metas===================================================================== -->
        <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
+
                <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
        <!-- Fix  Overwrite the original iGEM style=================================================== -->
+
                    <!-- Fix  Overwrite the original iGEM style=================================================== -->
        <link href="https://2018.igem.org/Template:Peking/css/fix?action=raw&ctype=text/css" rel="stylesheet" />
+
                    <link href="https://2018.igem.org/Template:Peking/css/fix?action=raw&ctype=text/css" rel="stylesheet" />
        <!-- CSS======================================================================================= -->
+
                    <!-- CSS======================================================================================= -->
        <link href="https://2018.igem.org/Template:Peking/css/bootstrap_min?action=raw&ctype=text/css" rel="stylesheet" />
+
                    <link href="https://2018.igem.org/Template:Peking/css/bootstrap_min?action=raw&ctype=text/css" rel="stylesheet" />
        <link href="https://2018.igem.org/Template:Peking/css/style?action=raw&ctype=text/css" rel="stylesheet" />
+
                    <link href="https://2018.igem.org/Template:Peking/css/style?action=raw&ctype=text/css" rel="stylesheet" />
        <!-- CSS======================================================================================= -->
+
                    <!-- flexslider================================================================================ -->
        <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/default?action=raw&ctype=text/css"/>
+
                    <link rel="stylesheet" type="text/css" media="all" href="https://2018.igem.org/Template:Peking/css/t2?action=raw&ctype=text/css" />
        <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css"/>
+
                    <link rel='stylesheet' id='responsive-css'  href='https://2018.igem.org/Template:Peking/css/responsive?action=raw&ctype=text/css' type='text/css' media='all' />
        <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css"/>
+
                        <link rel='stylesheet' id='polaroid-slider-css'  href='https://2018.igem.org/Template:Peking/css/t1?action=raw&ctype=text/css' type='text/css' media='all' />
        <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/notebook_panel?action=raw&ctype=text/css"/>
+
                        <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery?action=raw&ctype=text/javascript'></script>
        <style>
+
                        <!-- CSS======================================================================================= -->
 +
                        <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/default?action=raw&ctype=text/css">
 +
                        <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css">
 +
                        <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css">
 +
                        </head>
 +
                       
 +
                        <style>
 
                         body { background: #D2D8D8 url(https://static.igem.org/mediawiki/2018/7/78/T--Peking--images_bodyBackground.jpeg); background-attachment:fixed;}
 
                         body { background: #D2D8D8 url(https://static.igem.org/mediawiki/2018/7/78/T--Peking--images_bodyBackground.jpeg); background-attachment:fixed;}
            .texttitle{
+
                        .texttitle{
                color:#6495ED;
+
                        color: #6495ED;
                font-size: 38px;
+
                        font-size: 38px;
                line-height: 48px;
+
                        line-height: 48px;
                margin-bottom: 12px;
+
                        margin-bottom: 12px;
                font-family: raleway-bold, sans-serif !important;
+
                        font-family: raleway-bold, sans-serif !important;
                background: transparent;
+
                        background: transparent;
                letter-spacing: 3px;
+
                        letter-spacing: 3px;
                text-transform: uppercase;
+
                        text-transform: uppercase;
                font-weight: 350;
+
                        font-weight: 350;
                text-align: center;
+
                        text-align: center;
                padding-top:40px;
+
                        padding-top:40px;
            }
+
                        }
        sup{font-size:11px;}
+
                        sup{font-size:11px;}
        .references{margin-top:150px;margin-bottom:40px;}
+
                        .references{margin-top:150px;margin-bottom:40px;}
        .references p{font-size:14px !important; color:#666161 !important;}
+
                        .references p{font-size:14px !important; color:#666161 !important;}
        .classic-title {font-weight: 300;padding-top:30px;}
+
                        .classic-title {font-weight: 300;padding-top:30px;}
        .classic-title span {
+
                        .classic-title span {
            padding-bottom: 8px;
+
                        padding-bottom: 8px;
            border-bottom: 1px solid #383232;
+
                        border-bottom: 1px solid #383232;
            font-weight: 400;
+
                        font-weight: 400;
        }
+
                        }
        figure{margin-top:40px;margin-bottom:40px;height:auto;}
+
                        figure{margin-top:40px;margin-bottom:40px;height:auto;}
        .anchor{padding-top:100px;margin-top:-100px;}
+
                        .anchor{padding-top:100px;margin-top:-100px;}
            </style>
+
                        </style>
 +
 
 
          
 
          
 
     </head>
 
     </head>
Line 275: Line 282:
 
         </div>
 
         </div>
 
         <!--/Navigation -->
 
         <!--/Navigation -->
 +
       
 
          
 
          
 
          
 
          
Line 281: Line 289:
 
             <div class="row">
 
             <div class="row">
 
                 <div class="twelve columns centered text-center">
 
                 <div class="twelve columns centered text-center">
                     <h1>Design</h1>
+
                     <h1>Description</h1>
                    <p class="title1" style="text-align:justify; text-justify:inter-ideograph;">During humanity’s constant exploration of the world, the greatest pursuit is to remodel it to improve human life. While ‘phase separation’ in cells is under intense investigation, experiencing a research boom, the scientific community hopes that this phenomenon ‘worth millions of dollars’ can be artificially designed to enhance native functions and even acquire new ones. Our team, Peking iGEM 2018, went all out to overcome the challenge: implement phase separation in cells and synthesize artificial membrane-less organelles.</p>
+
     
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
Line 295: Line 303:
 
                          
 
                          
 
                          
 
                          
                            <div class="three columns">
+
                       
 +
                        <div class="three columns">
 
                             <div id="page-wrap">
 
                             <div id="page-wrap">
 
                                 <div id="sidebar" style="color:#000000">
 
                                 <div id="sidebar" style="color:#000000">
                                     <h4><a href="https://2018.igem.org/Team:Peking/Project">Description</a></h4>
+
                                     <h4><a href="https://2018.igem.org/Team:Peking/Project_Overview">Description</a></h4>
 
                                     <h4><a href="https://2018.igem.org/Team:Peking/Design">Design</a></h4>
 
                                     <h4><a href="https://2018.igem.org/Team:Peking/Design">Design</a></h4>
 
                                     <h4><a href="https://2018.igem.org/Team:Peking/Demonstration">Demonstration</a></h4>
 
                                     <h4><a href="https://2018.igem.org/Team:Peking/Demonstration">Demonstration</a></h4>
Line 313: Line 322:
 
                         <div class="nine columns">
 
                         <div class="nine columns">
 
                              
 
                              
                             <div class="texttitle">Overall design
+
                             <div class="texttitle">Descripition
 
<a id="A"></a></div>  
 
<a id="A"></a></div>  
 
                             <hr style="border:2px dashed; height:2px" color="#666666">
 
                             <hr style="border:2px dashed; height:2px" color="#666666">
Line 320: Line 329:
 
                                  
 
                                  
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>We put forward two questions: Why can phase separation in cells produce membrane-less organelles? And how can we design our system to implement its intended functions?<br/>
+
                                     <p>Ever since the beginning of life, compartmentalization has been playing a crucial role in biological systems. The famous Miller-Urey experiment shows that inorganic molecules can be transformed into organic substances under extreme conditions, catalyzed by, for example, lightnings. However, homogeneously distributed organic matter is not enough for life to emerge. It is almost impossible that all conditions are appropriate for life in the entire primordial soup, that is where the compartments come in.
Like oil in water, the contents of cells can separate into droplets. According to physical principles, the process where materials self-assemble into organelles is described as ‘phase separation’, which is the conversion of a single-phase system into a multiphase system. In general, materials flow to regions with low chemical potential instead of low concentration. Finally, the components are no longer distributed uniformly but form granules locally, which can act as organelles in the cell. <br/>
+
<br /><br />
Thus, the main work to synthesize an organelle is to implement phase separation in a cell. Then, how can we do it? Composition can switch rapidly through multivalency. Our design was inspired by recent studies showing that multivalency drives protein phase separation and formation of synthetic organelles. What’s more, we take our inspiration from existing living systems and previous work. For example, intrinsic disordered regions are an indicator of large-scale phase separation in the cell. They interact with each other through van der Waals forces, hydrophobic effects and electrostatic attraction. There are many interactions like this in nature, such as FKBP and Frb, SUMO and SIM, SH3 and PRM, phyB and PIF6. Thus, we can make good use of them to induce the self-assembly of our designed organelles and regulate them in various ways.<br/>
+
Only after coacervate droplets form and organic molecules condense inside, can a completely different environment be attained within, thus enabling the emergence of bio-macromolecules, or in other words, making life possible.In higher cells, compartmentalization is mainly achieved by different organelles, i.e. mitochondria, chloroplasts, lysosomes, etc. They play three major roles: isolation, special environment, localization.
In conclusion, multivalency drives the self-assembly of proteins and interaction binds the parts together. Therefore, interaction can induce phase separation and multivalency can make larger assemblies, which are two essential elements in our design that ensure the formation of synthetic organelles.<br/>
+
<br /><br />
 
+
Intuitively, for an organelle to remain a stable compartment, it must acquire a material boundary, or more precisely, a membrane. Membrane-bound organelles are indeed common and stable, but from the perspective of synthesis, they are too complicated for primordial conditions. However, there are also non-membrane-bound organelles, for instance, stress granules, P granules and nucleoli. More importantly, their formation is guided by simple physical principles. Membrane-less organelles and phase separation. Next came the question how can we synthase membrane-less organelles.
 +
<br /><br />
 +
According to physical chemistry, the process where materials self-assemble into organelles is described as ‘phase separation’, which is the conversion of a single-phase system into a multiphase system, much like how oil and water will spontaneously separate from each other. In general, materials flow to regions with low chemical potential instead of low concentration(Fig. 1). Finally, the components are no longer distributed uniformly but locally form granules, which are organelles in the cell(Fig. 2).
 +
<div align="center"><br /><br /><img src="https://static.igem.org/mediawiki/2018/8/80/T--Peking--project_overview2.png", width="300 px" "height="300 px"><br/>
 +
<p style="text-align:center;"> Figure. 1: Materials flow to regions with low chemical potential<sup>[1]</sup>. </p>
 +
<img src="https://static.igem.org/mediawiki/2018/3/3e/T--Peking--project_overview3.gif" width="300px" "height="300 px"></div>
 +
<p style="text-align:center;">Figure. 2: The components are no longer distributed uniformly but locally form granules</p>
 +
<br/>
 +
<p style="style="text-align:justify; text-justify:inter-ideograph;">
 +
Therefore, the main challenge in the synthesis of an organelle is to accomplish phase separation in a cell. We took our inspiration from existing living systems. For example, stress granules and P bodies are formed by the interaction between mRNA and proteins. RNA and proteins play a significant part in the phase separation in cells. IDR (Intrinsic Disordered Regions) are an indicator of large-scale phase separation in the cell. IDR interact with each other through van der Waals forces, electrostatic and hydrophobic effects between amino acid residues, while RNA molecules combine with proteins through their bases and ribose-phosphate chain. Previous work attempted to reproduce natural phase separation by connecting interaction modules such as SUMO/SIM and SH3/PRM to construct granules in the cell(Fig. 3).
 +
<br /><br />
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/8/8b/T--Peking--project_overview4.png" width="600 px" "height="350 px"><br /><br />
 +
<p style="text-align:center;">Figure. 3: Both natural and artificial have manifested multivalence<sup>[1]</sup>.</p>
 +
</div>
 +
<p style="text-align:justify; text-justify:inter-ideograph;">
 +
Summarizing these examples and according to physical principles, interaction between modules and multivalency are essential for phase separation. In general, interaction binds the parts together and multivalency results in larger assemblies, which are two guiding principles of our design(Figure. 4).</p><br /><br />
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/a/ab/T--Peking--project_overview5.png" width="600 px" "height="350 px">
 +
<p style="text-align:center;"> Figure. 4: Interaction and multivalence are essential for phase separation. <p>
 +
</div>
 
</p>
 
</p>
 
+
                                </div>
<div align="center"><img src="https://static.igem.org/mediawiki/2018/f/f1/T--Peking--project_design1.jpeg" width="300px" height="100 px" ></div>
+
        <figcaption style="text-align:center;">
+
                                  Figure. 1 Overall design
+
                              </figcaption> 
+
<br/><br/>
+
</div>
+
 
                             </div>
 
                             </div>
 
                             <div class="coll">
 
                             <div class="coll">
 
                                  
 
                                  
                             
+
                                <div class="content">
 +
                                    <p>We have built spontaneous and induced synthetic organelles by specific interaction modules, so that we can control the formation process by different ways for demands in biological engineering. Then we characterized the kinetics and properties of synthetic organelles theoretically and experimentally. These results confirm the potential of synthetic organelles in synthetic biology.</p>
 +
                                </div>
 
                             </div>
 
                             </div>
 
<div class="coll">
 
<div class="coll">
 
                                  
 
                                  
 
                                 <div class="content">
 
                                 <div class="content">
                                 
+
                                    <p>It inspired us to propose some specific applications of our synthetic organelles, including organization hub, sensor, and metabolism regulator. We have verified the feasibility of them by loading GFP-nanobody module, NAD+ sensor module and carotene production module to the whole system.</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
 
<div class="coll">
 
<div class="coll">
 
                                  
 
                                  
                             
 
                            </div>
 
                            <div class="texttitle">Multivalence
 
<a id="A"></a></div>
 
                            <hr style="border:2px dashed; height:2px" color="#666666">
 
 
                            <div class="coll">
 
                                                                <div class="info">
 
<a id="B1"></a>
 
                                 
 
                                </div>
 
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>To design multivalent modules, it is not ideal to use multiple repeated domains, which will not only make the protein extremely large and cause difficulty in molecular cloning, but also may be problematic for making transgenic organisms. Thus, instead of using multiple repeats, we turned to de novo-designed homo-oligomeric coiled coils, which we named HOTags (Homo-Oligomeric Tags). They are short peptides, ~30 amino acids<sup>[1]</sup>, and are therefore ideal tags to introduce multivalency. There are seven coiled coils previously characterized in protein de novo design studies. It has been proved in previous work by Shu Xiaokun’s lab that HOTag3 and HOTag6 are the most robust in driving aggregate formation over a wide range of protein concentrations, so we chose them.
+
                                     <p>We believe that our work has reached the medal requirements of demonstration as we have confirmed that our synthetic organelles can be formed in vivo and deliver a range of functions both for engineering and research due to their amazing properties. The concrete demonstration of the whole platform is shown below. You can see more details of experiments and modeling in our <a href="https://2018.igem.org/Team:Peking/Demonstrate"/>Demostration</a> and <a href="https://2018.igem.org/Team:Peking/Model"/>Modeling</a></p><br/><br/><br/>      
</p>
+
 
<div align="center"><img src="https://static.igem.org/mediawiki/2018/a/a1/T--Peking--project_design2.jpeg" width="300px" height="100 px" ></div>
+
 
    <figcaption style="text-align:center;">
+
[1] Banani, S. F., Lee, H. O., Hyman, A. A., & Rosen, M. K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nature reviews Molecular cell biology, 18(5), 285.
                                  Figure. 2 Coiled-coil assemblies and helical bundles<sup>[2]</sup>.
+
                              </figcaption>  
+
<br/><br/>                
+
</div>
+
  
                            </div>
 
                            <div class="coll">
 
                               
 
                             
 
                            </div>
 
<div class="coll">
 
                               
 
                                <div class="content">
 
                                 
 
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
<div class="coll">
+
 
                               
+
                             
+
                            </div>
+
 
            
 
            
 
                      
 
                      
  
<div class="texttitle">Interaction
+
                 
 +
                           
 +
                        </div><!--9 columns end-->
 +
                       
 +
                    </div>
 +
                   
 +
                   
 +
                   
 +
                   
 +
                    </div><!--row end-->
 +
            </section>
 +
        </div><!--12 columes end-->
 +
        </div><!--page-content end-->
 +
       
 +
       
 +
       
 +
       
 +
       
 +
       
 +
       
 +
       
 +
     
 +
                                <!-- footer============================================================================== -->
 +
        <style>
 +
            footer .copyright span:before {
 +
                content: "|";
 +
                padding-left: 10px;
 +
                padding-right: 12px;
 +
                color: #b4bbbb;
 +
            }
 +
        footer .copyright span:after {
 +
            content: "|";
 +
            padding-left: 10px;
 +
            padding-right: 12px;
 +
            color: #b4bbbb;
 +
        }
 +
        </style>
 +
        <footer id="page-footer">
 +
<footer id="page-footer">
 +
                <div class="row,row1">
 +
                    <ul class="footer-social">
 +
                        <li class="col-md-6" id="PKU-administration" style="margin-bottom:25px;max-width:300px">
 +
                            <a href="http://dean.pku.edu.cn/pkudean/index.html"><img src="https://static.igem.org/mediawiki/2018/7/7a/T--Peking--images_PKU_Administration_logo.png"></a>
 +
                        </li>
 +
                        <li class="col-md-6" id="PKU-SLS" style="margin-bottom:25px;max-width:300px">
 +
                            <a href="http://www.bio.pku.edu.cn/"><img src="https://static.igem.org/mediawiki/2018/0/04/T--Peking--images_PKU_SLS_logo.png"></a>
 +
                        </li>
 +
                     
 +
                        <li class="col-md-6" id="PKU-CQB" style="margin-bottom:25px;max-width:300px">
 +
                            <a href="http://cqb.pku.edu.cn/en/"><img src="https://static.igem.org/mediawiki/2018/e/e1/T--Peking--images_PKU_CQB_logo.png"></a>
 +
                        </li>
  
<a id="B"></a></div>
+
                    </ul>
                            <hr style="border:2px dashed; height:2px" color="#1E90FF">
+
                </div>
                    <div class="coll">
+
            <div class="row">
 +
                <div class="twelve columns" >
 +
                    <ul class="copyright">
 +
                        <!--<li>&copy; 2014 Sparrow</li> -->
 +
                        <li><a href="https://2018.igem.org/Team:Peking">Home</a>&nbsp;&nbsp;&nbsp;<a href="mailto:indigomad@pku.edu.cn">Contact</a></li>
 +
                        <span> &copy;2018 PEKING IGEM. All Rights Reserved.</span>
 +
                        <li><a href="http://getbootstrap.com/2.3.2/">Based on Bootstrap</a></li>
 +
                    </ul>
 +
                </div>
 +
                <div id="go-top" style="display: block;"><a title="Back to Top" href="#">Go To Top</a></div>
 +
            </div>
  
                                <div class="content">
 
                                    <p>To design interaction modules, we tested many components and fused them to the N-termini of HOTag3 or HOTag6. Some of them spontaneously self-assemble and some are inducible. Moreover, we can regulate them using various different inducers and promoters with different intensities. </p>
 
                                </div>
 
               
 
  
                            <div class="coll">
+
<!-- Footer End-->
                                <div class="info">
+
                       
<a id="B1"></a>
+
                       
                                    <div class="ordi">1.</div>
+
            <!-- Java Script======================================================================= -->
                                </div>
+
            <script>window.jQuery || document.write('<script src="https://2018.igem.org/Template:Peking/Javascript/jquery_1_10_2_min?action=raw&ctype=text/javascript"><\/script>')</script>
                                <div class="content">
+
            <script type="text/javascript" src="https://2018.igem.org/Template:Peking/Javascript/jquery_migrate_1_2_1_min?action=raw&ctype=text/javascript"></script>
                                    <h3>SUMO and SIM</h3>
+
           
                                </div>
+
            <script src="https://2018.igem.org/Template:Peking/Javascript/jquery_flexslider?action=raw&ctype=text/javascript"></script>
                            </div>
+
            <script src="https://2018.igem.org/Template:Peking/Javascript/doubleaptogo?action=raw&ctype=text/javascript"></script>
 +
            <script src="https://2018.igem.org/Template:Peking/Javascript/init?action=raw&ctype=text/javascript"></script>
 +
           
 +
            <!--quotations from flexslider: start-->
 +
            <script src='https://2018.igem.org/Template:Peking/Javascript/modernizr_js?action=raw&ctype=text/javascript'></script>
 +
                <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery_polaroid?action=raw&ctype=text/javascript'></script>
 +
                <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery_easing?action=raw&ctype=text/javascript'></script>
 +
                <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery_transform_0_8_0_min?action=raw&ctype=text/javascript'></script>
 +
                <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery_preloader?action=raw&ctype=text/javascript'></script>
 +
                <!--quotations from flexslider: end-->
 +
               
 +
                <!--quotations from black: start-->
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_sticky?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_easing_1_3_pack?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/bootstrap_min?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_patallax_1_1_3?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/appear?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/modernizr?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_prettyPhoto?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/isotope?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_bxslider_min?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_cycle_all?action=raw&ctype=text/javascript" ></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_maximage?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/scripts?action=raw&ctype=text/javascript "></script>
 +
                <!--quotations from black: end-->
 
                              
 
                              
                             <div class="coll">
+
                              
 
+
                            </body>
                                <div class="content">
+
</html>
                                    <p>Post-translational modifications by the small ubiquitin-like modifier (SUMO) are crucial events in cellular response to radiation and a wide range of DNA-damaging agents. Previous studies have shown that SUMO mediates protein-protein interactions by binding to a SUMO-interacting motif (SIM) on receptor proteins. Furthermore, recent studies have shown that a protein with ten repeats of human SUMO3 (polySUMO) and a protein with ten repeats of SIM (polySIM) can phase separate in vitro<sup>[3]</sup>. Therefore, we chose SUMO3 and SIM as a pair of interaction modules that can drive the formation of synthetic organelles spontaneously. For plasmid construction, in order to make synthetic organelles visible, we chose mCherry (red fluorescent protein) and yEGFP (yeast-enhanced green fluorescent protein) as reporters. Then, we fused mCherry between the C-terminus of SIM and the N-terminus of HOTag6. Similarly, we fused yEGFP between the C-terminus of SUMO and the N-terminus of HOTag3. We used the resulting constructs to transform yeast and proved that they can be stably co-expressed. If the system works, we will find red granules co-localized with green granules in cells under a fluorescence microscope. </p>
+
<div align="center"><img src="https://static.igem.org/mediawiki/2018/b/b0/T--Peking--project_design4.jpeg"  ></div>
+
                          <figcaption style="text-align:justify; text-justify:inter-ideograph;">
+
                                    Figure. 3A Structure of SUMO3 and SIM. Modification of proteins by SUMO are recognized by SUMO-interacting motifs termed
+

Revision as of 03:57, 17 October 2018

Team

Description

Descripition

Ever since the beginning of life, compartmentalization has been playing a crucial role in biological systems. The famous Miller-Urey experiment shows that inorganic molecules can be transformed into organic substances under extreme conditions, catalyzed by, for example, lightnings. However, homogeneously distributed organic matter is not enough for life to emerge. It is almost impossible that all conditions are appropriate for life in the entire primordial soup, that is where the compartments come in.

Only after coacervate droplets form and organic molecules condense inside, can a completely different environment be attained within, thus enabling the emergence of bio-macromolecules, or in other words, making life possible.In higher cells, compartmentalization is mainly achieved by different organelles, i.e. mitochondria, chloroplasts, lysosomes, etc. They play three major roles: isolation, special environment, localization.

Intuitively, for an organelle to remain a stable compartment, it must acquire a material boundary, or more precisely, a membrane. Membrane-bound organelles are indeed common and stable, but from the perspective of synthesis, they are too complicated for primordial conditions. However, there are also non-membrane-bound organelles, for instance, stress granules, P granules and nucleoli. More importantly, their formation is guided by simple physical principles. Membrane-less organelles and phase separation. Next came the question how can we synthase membrane-less organelles.

According to physical chemistry, the process where materials self-assemble into organelles is described as ‘phase separation’, which is the conversion of a single-phase system into a multiphase system, much like how oil and water will spontaneously separate from each other. In general, materials flow to regions with low chemical potential instead of low concentration(Fig. 1). Finally, the components are no longer distributed uniformly but locally form granules, which are organelles in the cell(Fig. 2).




Figure. 1: Materials flow to regions with low chemical potential[1].

Figure. 2: The components are no longer distributed uniformly but locally form granules


Therefore, the main challenge in the synthesis of an organelle is to accomplish phase separation in a cell. We took our inspiration from existing living systems. For example, stress granules and P bodies are formed by the interaction between mRNA and proteins. RNA and proteins play a significant part in the phase separation in cells. IDR (Intrinsic Disordered Regions) are an indicator of large-scale phase separation in the cell. IDR interact with each other through van der Waals forces, electrostatic and hydrophobic effects between amino acid residues, while RNA molecules combine with proteins through their bases and ribose-phosphate chain. Previous work attempted to reproduce natural phase separation by connecting interaction modules such as SUMO/SIM and SH3/PRM to construct granules in the cell(Fig. 3).



Figure. 3: Both natural and artificial have manifested multivalence[1].

Summarizing these examples and according to physical principles, interaction between modules and multivalency are essential for phase separation. In general, interaction binds the parts together and multivalency results in larger assemblies, which are two guiding principles of our design(Figure. 4).



Figure. 4: Interaction and multivalence are essential for phase separation.

We have built spontaneous and induced synthetic organelles by specific interaction modules, so that we can control the formation process by different ways for demands in biological engineering. Then we characterized the kinetics and properties of synthetic organelles theoretically and experimentally. These results confirm the potential of synthetic organelles in synthetic biology.

It inspired us to propose some specific applications of our synthetic organelles, including organization hub, sensor, and metabolism regulator. We have verified the feasibility of them by loading GFP-nanobody module, NAD+ sensor module and carotene production module to the whole system.

We believe that our work has reached the medal requirements of demonstration as we have confirmed that our synthetic organelles can be formed in vivo and deliver a range of functions both for engineering and research due to their amazing properties. The concrete demonstration of the whole platform is shown below. You can see more details of experiments and modeling in our Demostration and Modeling




[1] Banani, S. F., Lee, H. O., Hyman, A. A., & Rosen, M. K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nature reviews Molecular cell biology, 18(5), 285.