Difference between revisions of "Team:NCKU Tainan/Kinetic Law"

Line 68: Line 68:
 
                                             Michaelis and Menten considered a quasi equilibrium between E and the ES-Complex to simplify the system.
 
                                             Michaelis and Menten considered a quasi equilibrium between E and the ES-Complex to simplify the system.
 
                                         </p>
 
                                         </p>
                                         <p class="pcontent">$${{dS \over dt} = -k_1E \cdot S + k_{-1}ES}$$</p>
+
                                         <p class="pcontent">$${{d[S] \over dt} = -k_1[E] \cdot S + k_{-1}ES}$$</p>
                                         <p class="pcontent">$${{dES \over dt} = k_1E \cdot S - (k_{-1} + k_2)ES}$$</p>
+
                                         <p class="pcontent">$${{d[ES]\over dt} = k_1[E] \cdot S - (k_{-1} + k_2)ES}$$</p>
                                         <p class="pcontent">$${{dE \over dt} = k_1E \cdot S - (k_{-1} + k_2)ES}$$</p>
+
                                         <p class="pcontent">$${{d[E] \over dt} = k_1[E] \cdot S - (k_{-1} + k_2)ES}$$</p>
                                         <p class="pcontent">$${{dP \over dt} = k_2ES}$$</p>
+
                                         <p class="pcontent">$${{d[P] \over dt} = k_2[ES]}$$</p>
 
                                         <p class="pcontent">After derivation $${v = {-ds \over dt} = {dP \over dt}}$$</p>
 
                                         <p class="pcontent">After derivation $${v = {-ds \over dt} = {dP \over dt}}$$</p>
 
                                         <p class="pcontent">where V<sub>m</sub> represents the maximum rate achieved by the system,  
 
                                         <p class="pcontent">where V<sub>m</sub> represents the maximum rate achieved by the system,  
Line 80: Line 80:
 
                                             it is thus called turnover number.
 
                                             it is thus called turnover number.
 
                                         </p>
 
                                         </p>
                                         <p class="pcontent">$${Vmax = k_2 \cdot E_{total} = k_{cat} \cdot E_{total}}$$</p>
+
                                         <p class="pcontent">$${Vmax = k_2 \cdot [E_{total}] = k_{cat} \cdot [E_{total}]}$$</p>
 
                                         <p class="pcontent">B. A more realistic description of a enzymatic reactions than pure Michaelis Menten Kinetics  
 
                                         <p class="pcontent">B. A more realistic description of a enzymatic reactions than pure Michaelis Menten Kinetics  
 
                                             is given by considering the product forming reaction step as reversible.
 
                                             is given by considering the product forming reaction step as reversible.
 
                                         </p>
 
                                         </p>
 
                                         <p class="pcontent">$${E + S \underset{k_{-1}}{\stackrel{k_1}{\rightleftharpoons}} ES \xrightarrow{k_2} E + P}$$</p>
 
                                         <p class="pcontent">$${E + S \underset{k_{-1}}{\stackrel{k_1}{\rightleftharpoons}} ES \xrightarrow{k_2} E + P}$$</p>
                                         <p class="pcontent">The Enzyme(E) forms a Complex (ES) with the Substrate (S) and modifies it to the Product (P).  
+
                                         <p class="pcontent">The Enzyme (E) forms a Complex (ES) with the Substrate (S) and modifies it to the Product (P).  
 
                                             In the reversible Michaelis-Menten reaction the Product can bind the enzyme again and react back to the substrate.  
 
                                             In the reversible Michaelis-Menten reaction the Product can bind the enzyme again and react back to the substrate.  
 
                                             This process is described by the ODE system.
 
                                             This process is described by the ODE system.
 
                                         </p>
 
                                         </p>
                                         <p class="pcontent">$${{dS \over dt} = -k_1E \cdot S + k_{-1}ES}$$</p>
+
                                         <p class="pcontent">$${{d[S] \over dt} = -k_1[E] \cdot [S] + k_{-1}[ES]}$$</p>
                                         <p class="pcontent">$${{dES \over dt} = k_1E \cdot S + k_{-2}E \cdot P - (k_{-1} + k_2)ES}$$</p>
+
                                         <p class="pcontent">$${{d[ES] \over dt} = k_1[E] \cdot [S] + k_{-2}[E] \cdot P - (k_{-1} + k_2)[ES]}$$</p>
                                         <p class="pcontent">$${{dE \over dt} = k_1E \cdot S - k_{-2}E \cdot P - (k_{-1} + k_2)ES}$$</p>
+
                                         <p class="pcontent">$${{d[E] \over dt} = k_1[E] \cdot [S] - k_{-2}[E] \cdot P - (k_{-1} + k_2)[ES]}$$</p>
                                         <p class="pcontent">$${v = {dP \over dt} = k_2ES - k_{-2}E \cdot P = v_f - v_b}$$</p>
+
                                         <p class="pcontent">$${v = {dP \over dt} = k_2[ES] - k_{-2}E \cdot P = v_f - v_b}$$</p>
 
                                         <p class="pcontent">After derivation $${v = {-ds \over dt} = {dP \over dt}}$$</p>
 
                                         <p class="pcontent">After derivation $${v = {-ds \over dt} = {dP \over dt}}$$</p>
 
                                         <p class="pcontent">Finally we use V<sub>fmax</sub> = k2⋅Etotal and V<sub>bmax</sub> = k<sub>−1</sub>⋅Etotal to get the common form for the reversible Michaelis Menten equation</p>
 
                                         <p class="pcontent">Finally we use V<sub>fmax</sub> = k2⋅Etotal and V<sub>bmax</sub> = k<sub>−1</sub>⋅Etotal to get the common form for the reversible Michaelis Menten equation</p>

Revision as of 19:44, 17 October 2018

Kinetic law

Ideas Come True
Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)