Keithaiken (Talk | contribs) |
|||
Line 9: | Line 9: | ||
<div class="content"> <!--everything added for content goes after this line--> | <div class="content"> <!--everything added for content goes after this line--> | ||
− | + | <br> | |
<h1>Arc PNCs as a Transfection Agent</h1> | <h1>Arc PNCs as a Transfection Agent</h1> | ||
Line 20: | Line 20: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
<div style="clear: both"></div> | <div style="clear: both"></div> | ||
Line 30: | Line 31: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
<div style="clear: both"></div><br><br> | <div style="clear: both"></div><br><br> | ||
Line 50: | Line 52: | ||
</ul> | </ul> | ||
</div> | </div> | ||
− | </div | + | </div> |
</div> <!--this closes off the content div--> | </div> <!--this closes off the content div--> | ||
</body> | </body> | ||
</html> | </html> |
Revision as of 00:01, 18 October 2018
Arc PNCs as a Transfection Agent
mRNA delivery is a promising avenue for the application of novel gene therapies. The expression of therapeutic proteins from exogenous DNA requires transport of these constructs to the nucleus for transcription, complicating the route to expression. Additionally, current methods of DNA delivery, such as lentiviral vectors, come with the risk of random genome integration which can induce dangerous mutations in transduced cells.
Delivering therapeutic proteins encoded in mRNA is not without drawbacks. Cell cultures treated with untreated mRNA exhibit an inflammatory response when compared to cells treated with encapsulated mRNA (Uchida et al., 2013). We think V.I.N.C.En.T. could help with this!
In order to show the capacity for delivery of mRNA of one of our most interesting PNCs, we attempted to deliver an mRNA encoding a green fluorescent protein called Clover to cultures of HT22 neuronal cells using our minimal Arc Gag particles. This protein was designed by selecting the region of the Arc coding sequence with the highest homology to the HIV-1 Gag protein. It has been theorized that the stem loops in the RNA sequence encoding the N-lobe of the HIV-1 Gag protein play a role in regulating the uptake of RNA into the Gag complex, so we also investigated the effect of adding this sequence to the 3’ untranslated region of the Clover mRNA.
P22 PNCs as a Biological Control Agent
A growing concern for Southern Alberta is the spread of the aquatic invasive species zebra and quagga mussels (Dreissena polymorpha and D. bugensis, respectively). The current methods of controlling their spread are: Zequanox®, a heat killed cell lysate of Pseudomonas fluorescens; and “potash” or potassium chloride (Department of Fisheries and Oceans Canada; see our Product Design page for more information).
P22 PNCs as a Gene Therapy
In collaboration with the University of Calgary....
References
- Department of Fisheries and Oceans Canada. (2014). Lake Winnipeg Zebra Mussel treatment. DFO Canada Science Advisory Secretariat Science Response. 2014/031
- Uchida, S., Itaka, K., Uchida, H., Hayakawa, K., Ogata, T., Ishii, T., Fukushima, S., Osada, K., Kataoka, K. (2013) In Vivo Messenger RNA Introduction into the Central Nervous System Using Polyplex Nanomicelle. PLOS ONE, 8, e56220.