Team:UC San Diego/Description

Project Description

Understanding the current methods of cancer diagnosis and their limitations

Currently, there are several techniques used for the detection of specific cancers, including imaging techniques such as computed tomography (CT), mammography for breast cancer diagnoses, or positron emission tomography (PET) scans. Although imaging techniques are often capable of detecting cancer with high accuracy, they suffer from being unable to distinguish benign from malignant tumors.

However, the gold standard for cancer diagnosis is histopathology, which is invasive and often painful. For example, techniques such as fine needle aspiration (FNA) and core biopsy are highly invasive and are required for the extraction of suspected tumor tissue and subsequent histological evaluation. The method has also proven to be ineffective. First, comprehensive characterization of multiple tumor specimens obtained from the same patient illustrated spatial heterogeneity as well as recurrences between the primary and local tumor in the same patient. This heterogeneity poses a pivotal challenge to guide clinical decision-making in oncology, as biopsies may be inaccurate in capturing the complete genomic landscape for an individual patient. In addition, a significant barrier to biomarker testing is the availability of an adequate amount of tissue due to increasing diagnostic demands and declining amounts of tissue per patient. Finally, tissue biopsies also increase the cost of patient care and the turnaround time for getting results, impacting the decision making process.