Team:SJTU-BioX-Shanghai/Ultrasonic Imaging

Ultrasonography

Summary

Ultrasound (US) imaging is one of the principle tools of our project. We need ultrasonic instrument to detect the exist of bubbles and the effectiveness and the sensitivity of our end product. So, it is necessary to model the our product's response in the ultrasonic field, explain the phenomenon in our experiments and design better device for our detection.In summary, there are several fundamental purposes in this part:

1. Explain why we can detect such small bubbles in the escherichia coli.

2. Discover the relationship of the signal intensity and density of bacteria.

3. Design better divices and methods for our detection.

Basic Concepts

Basic principle of B-mode ultrasound imaging

The ultrasonic testing method we use is a pulse-echo approach with a brightness-mode (B-mode) display, so does the most primary modern medical ultrasound test [1]. It involves transmitting small pulses of ultrasound waves from a transducer into the determinand. As the ultrasound waves penetrate body tissues of different acoustic impedances along the path of transmission, some are reflected back to the transducer (echo signals) and some continue to penetrate deeper. The echosignals returned from many sequential coplanar pulses are processed and combined to generate an image. Thus, an ultrasound transducer works both as a speaker (generating sound waves) and a microphone (receiving sound waves). The direction of ultrasound propagation along the beam line is called the axial direction, and the direction in the image plane perpendicular to axial is called the lateral direction. Usually only a small fraction of the ultrasound pulse returns as a reflected echo after reaching a body tissue interface, while the remainder of the pulse continues along the beam line to greater tissue depths.

Basic parameters and Settings

Wavelength and Frequency

According to the formula $c=\lambda f$ (where $c$ is sound velocity, $\lambda$ is wavelength, $f$ is frequency), the wavelength and frequency of US are inversely related, ultrasound of high frequency has a short wavelength and vice versa. The ultrasound wave frequency is determined by the transducer, and the transducers' transmitting frequency we can get range from 4MHz to 44MHz.

Resolution[2]

Spacial resolution has great influence on our detection part. The ability of an ultrasound system to distinguish between two points at a particular depth in tissue, that is to say, axial resolution and lateral resolution, is determined predominantly by the transducer.

Axial (also called longitudinal) resolution is the minimum distance that can be differentiated between two reflectors located parallel to the direction of ultrasound beam. Mathematically, it is equal to half the spatial pulse length spatial pulse length Spatial pulse length is the product of the number of cycles in a pulse of ultrasound and the wavelength. . Axial resolution is high when the spatial pulse length is short.

Lateral resolution, with respect to an image containing pulses of ultrasound scanned across a plane of tissue, is the minimum distance that can be distinguished between two reflectors located perpendicular to the direction of the ultrasound beam. Lateral resolution is high when the width of the beam of ultrasound is narrow.

Temporal resolution is the time from the beginning of one frame to the next; it represents the ability of the ultrasound system to distinguish between instantaneous events of rapidly moving structures, for example, during the cardiac cycle.

Contrast resolution refers to the ability to distinguish between different echo amplitudes of adjacent structures. Contrast agents are used when conventional ultrasound imaging does not provide sufficient distinction between two kinds of tissue. The contrast enhancement phenomenon arises because the impedance for ultrasound in gas is markedly different from that for soft tissue. When such a disparity occurs, ultrasound is reflected strongly from the microbubbles, thus enhancing contrast resolution and visualization of structures of interest. In our project, we use the principle of contrast agents (microbubbles in E.coli) to detect the intestinal tumor tissue.

Interaction with tissue

As the ultrasound waves travel through the tissue, they will interact with it. The ultrasound waves can be absorbed inside the tissue and be reflected, transmitted, scattered on the surface. Reflection-mode (the mode we use) ultrasound images display the reflectivity of the object. The reflectivity depends on both the object shape and the material in a complex way.Two important types of reflections are surface reflections and volumetric scattering.

Surface reflecting happens when ultrasound waves encounter Large planar surface (relative to wavelength λ) boundary between two materials of different acoustic impedances.(figure 1[3])

Fig 1. Reflection and transmission on the interface.

Note:

$\bullet$ p is the pressure (force per unit area) [ $kg/(m\cdot s^2)$ ]

$\bullet$ $Z=\rho_0 c$ is characteristic impedance (for a plane harmonic wave) [ $kg/(m^2\cdot s)$ ]

$\bullet$ $\rho_0$ is density [ $g/m^3$ ]

$\bullet$ c is wave velocity [ $m/s$ ]

Boundary conditions:

$\bullet$ Equilibrium total pressure at boundary: $p_{ref}+p_{inc}=p_{trn}$ (Pressure must be continuous at the surface)

$\bullet$ Snell's Law: $\sin \theta_{inc}/\sin \theta_{trn} = c_1/c_2$

$\bullet$ Angle of reflection: $\theta_{ref}=-\theta_{inc}$

The pressure reflectivity at the surface is

$$R = \frac{{{{\rm{p}}_{ref}}}}{{{p_{inc}}}} = \frac{{{Z_2}\cos {\theta _{inc}} - {Z_1}\cos {\theta _{trn}}}}{{{Z_2}\cos {\theta _{inc}} + {Z_1}\cos {\theta _{trn}}}}$$

When interface parallel to wavefront, $\theta_{inc}=\theta_{ref}=\theta_{trn}=0$. Thus the reflectivity or pressure coefficient for waves at normal incidence to surface is:

$$R = {R_{12}} = - {R_{21}} = \frac{{{p_{ref}}}}{{{p_{inc}}}} = \frac{{{Z_2} - {Z_1}}}{{{Z_1} + {Z_2}}}$$

If $Z_1$ is approximate to $Z_2$,

$$R\approx \frac{{\Delta Z}}{{2{Z_0}}}$$

Where $Z_0$ denotes the typical acoustic impedance of soft tissue. $-1\leq R\leq1$.

The intensity of an ultrasonic wave is $I=p^2/(2Z)$. Thus the reflected and transmitted intensities are

$$\frac{{{I_{ref}}}}{{{I_{inc}}}} = {\left( {\frac{{{Z_2} - {Z_1}}}{{{Z_2} + {Z_1}}}} \right)^2}{\rm{ , }}\frac{{{I_{trn}}}}{{{I_{inc}}}} = \frac{{4{Z_1}{Z_2}}}{{{{\left( {{Z_1} + {Z_2}} \right)}^2}}}$$

On a microscopic level (less than or comparable to an ultrasonic wavelength), mechanical inhomogeneities inherent in tissue will scatter sound. $\eta$ = Backscatter coefficient = Backscatter cross section/unit volume.

According to the relationship of ultrasound wavelength and the object's size, the interaction can be divided into three types:

If wavelength is much larger than the size ($\lambda \gg R$), reflection, transmission should be considered first;

If wavelength is much smaller than the size ($\lambda \ll R$), Rayleigh scattering should be considered first;

If wavelength is approximate to the size ($\lambda \approx R$), diffraction theory (similar to the light) should be considered first.

Device Design

xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx. The text-link template is here.

2018 Interlab Plate Reader Protocol
Protocols/Transformation

Bubbles's Response Model

xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx The figure template is here.

Fig 1. The particle standard curve obtained form the 2nd calibration experiment.

xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx.

The table template is here.

Table 1. Colony forming units per 0.1 OD600

samples dilution factor CFU/mL
8×104 8×105 8×106
1.1 TNTC 48 11 3.84E+07
1.2 248 41 10 3.28E+07
1.3 172 54 5 4.32E+07
2.1 TNTC 143 20 1.14E+08
2.2 TNTC 153 25 1.22E+08
2.3 TNTC 151 18 1.21E+08
3.1 TNTC 119 16 9.52E+07
3.2 TNTC 125 19 1.00E+08
3.3 TNTC 89 18 7.12E+07
4.1 TNTC 209 16 1.67E+08
4.2 TNTC 130 17 1.04E+08
4.3 TNTC 164 10 1.31E+08

Section5

XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

Reference

[1] Chan V, Perlas A. Basics of ultrasound imaging[M]//Atlas of ultrasound-guided procedures in interventional pain management. Springer, New York, NY, 2011: 13-19.

[2] Alexander Ng, Justiaan Swanevelder; Resolution in ultrasound imaging, Continuing Education in Anaesthesia Critical Care & Pain, Volume 11, Issue 5, 1 October 2011, Pages 186–192.

[3] Chapter U. Reflection-mode ultrasound imaging[J].

[4] Chapter U. Reflection-mode ultrasound imaging[J].