Experiments
Materials:
- dH2O
- iGEM Kit Plates
- Pipette
Method:
- With a pipette tip, punch a hole through the foil cover into the corresponding well of the part desired.
- Pipette 10 µLof dH2O into the well. Pipette up and down several times and let sit for 5 minutes to make sure the dried DNA is fully resuspended. Resuspension will be in a crimson color, as the dried DNA has crisol dye.
- Transform resuspended DNA into an eppendorf tube.
Competent Cell Preparation Protocol:
Buffer 1:
- Potassium acetate 30 µL
- RbCl 100 µL
- CaCl 100 µL
- 87% glycerol 4,3 mL
- Complete to 25 mL
Buffer 2:
- MOPS 10 µL
- RbCl 10 µL
- CaCl 75 µL
- 87% glycerol 4,3 mL
- Complete to 25 mL
Method:
- Pipette 100 µL of grown KO11 into 10 mL LB with 2% glucose, incubate for 2 hrs at 37 ℃ till an OD value of 0,4-0,6 is reached.
- Put 4,5 mL of cultures into falcon tubes, incubate on ice for 15 mins.
- Centrifuge at 3500 RPM at 4 ℃ for 10 mins.
- Discard supernatant.
- Resuspend pellet on ice in ice-cold 650 µL of Buffer 1.
- Centrifuge at 3500 RPM at 4 ℃ for 5 min.
- Discard supernatant.
- Resuspend pellet on ice in ice-cold 250 µL of Buffer 2.
- Aliquot as 60 µL in 1,5 mL eppendorf.
- Store at -80 ℃.
Overnight Culture in Falcon Tubes Protocol:
Materials:
- 50 mL Falcon tube
- Pipette and pipette tips
- Incubator
- Antibiotics
- Cultured bacteria
- LB broth
Method:
- Put 10 mL LB broth in a 50 mL falcon tube.
- Add 10 µL of antibiotics.
- Get 100 µL of cultured bacteria and add to the falcon.
- Place the tube in incubator for 16-18 hrs at 37℃, 135 RPM.
Competent Cell Test Kit Protocol
Materials:
- 70% ethanol
- Paper towels
- Lab marker / Sharpie
- 1,5 mL microcentrifuge tubes
- Container for ice
- Ice
- Competent cell aliquot(s)
- Competent Cell Test Kit
- Agar plates with chloramphenicol
- 42°C Water Bath (or hot water source and thermometer)
- 37°C Incubators (oven and shaker)
- LB
- Sterile glass beads or sterile cell spreader
- Pipette
- Pipette tips
- Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., … Gorsich, S. W. (2010). Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnology for Biofuels, 3, 2. http://doi.org/10.1186/1754-6834-3-2
- Almeida, J, R,. Modig, T., Petersson, A., Hahn-Hagerdal, B., Liden, G., Gorwa-Grauslund, M, F., (2007). Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal of Chemical Technology and Biotechnology. Vol: 82,4. https://doi.org/10.1002/jctb.1676
- Ask, M., Bettiga, M., Mapelli, V., Olsson, L. (2013). The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Retrieved from https://doi.org/10.1186/1754-6834-6-22
- Ask, M., Mapelli, V., Höck, H., Olsson, L., Bettiga, M. (2013). Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microbial Cell Factories. 12:87 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817835/
- Burton, G. J., & Jauniaux, E. (2011). Oxidative stress. Best Practice & Research. Clinical Obstetrics & Gynaecology, 25(3), 287–299. http://doi.org/10.1016/j.bpobgyn.2010.10.016
- Dasari, S., Ganjayi, M.S., Origanti, L., Balaji, H., Meriga, B. (2017). Glutathione S-transferases Detoxify Endogenous and Exogenous Toxic Agents- Minireview. Retrieved from https://pdfs.semanticscholar.org/901b/a8c5eab4904637cc31b32b955f2a1df6821d.pdf
- Deniz, I., Imamoglu, E., Sukan, F., V., (2015). Evaluation of scale-up parameters of bioethanol production from Escherichia coli KO11. Turkish Journal of Biochemistry. Vol 40, no 1, 74-80. Retrieved from: http://www.turkjbiochem.com/2015/074-080.pdf
- Fuente-Hernandez, A., Lee, R., Beland, N., Zamboni, I., Lavoie, J.M. (2017). Reduction of Furfural to Furfuryl Alcohol in Liquid Phase over a Biochar-Supported Platinum Catalyst. Energies. 10(3). https://doi.org/10.3390/en10030286
- Höck, H., Ask, M., Mapelli, V., Olsson, L., Bettiga, M. (2013). Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microbial Cell Factories. 12:87 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817835/
- Kim, D., & Hahn, J.-S. (2013). Roles of the Yap1 Transcription Factor and Antioxidants in Saccharomyces Cerevisiae’s Tolerance to Furfural and 5-Hydroxymethylfurfural, Which Function as Thiol-Reactive Electrophiles Generating Oxidative Stress. Applied and Environmental Microbiology, 79(16), 5069–5077. http://doi.org/10.1128/AEM.00643-13
- Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1), 7. http://doi.org/10.1186/s40643-017-0137-9
- Lu, S. C. (2013). Glutathione Synthesis. Biochemica et Biophysica Acta, 1830(5), 3143–3153. http://doi.org/10.1016/j.bbagen.2012.09.008
- National Center for Biotechnology Information. PubChem Compound Database; CID=7362, https://pubchem.ncbi.nlm.nih.gov/compound/7362 (accessed Aug. 7, 2018).
- National Center for Biotechnology Information. PubChem Compound Database; CID=237332, https://pubchem.ncbi.nlm.nih.gov/compound/237332 (accessed Aug. 7, 2018).
- National Center for Biotechnology Information. PubChem Compound Database; CID=7361, https://pubchem.ncbi.nlm.nih.gov/compound/7361 (accessed Aug. 9, 2018).
- ResearchGate, (2014), Scanning Electron Microscopy Image of Saccharomyces. Retrieved from: https://www.researchgate.net/figure/Scanning-electron-microscopy-image-of-Saccharomyces-cerevisiae-The-budding-yeast-cells_fig1_308144762
- Wang, X., Miller, E. N., Yomano, L. P., Zhang, X., Shanmugam, K. T., & Ingram, L. O. (2011). Increased Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains Engineered for the Production of Ethanol and Lactate. Applied and Environmental Microbiology, 77(15), 5132–5140. http://doi.org/10.1128/AEM.05008-11
- Wang, X., Miller, E. N., Yomano, L.P., Shanmugam, K. T. & Ingram, L.O (2012). Cryptic ucpA gene increases furan-tolerance in Escherichia coli, Applied and Environmental Microbiology, Volume 78, Issue 7, http://aem.asm.org/content/early/2012/01/18/AEM.07783-11.short
- Zheng, H., Wang, X., Yomano, L.P., Geddes, R. D., Shanmugan, K. T., Ingram, L.O. (2013). Improving Escherichia coli FucO for Furfural Tolerance by Saturation Mutagenesis of Individual Amino Acid Positions. Applied and Environmental Microbiology Vol 79, no 10. 3202–3208. http://aem.asm.org/content/79/10/3202.full.pdf+html