Description of the project

Our Vision

A new way of understanding our environment

The environment is made with millions of molecules. Many of them can be hazardous and many of them beneficial. Our lives are conditioned by our surrounding molecules, and they are too small to be observed.

The society is made with millions of persons and everyone is different from the other. Unlike molecules, no two people are alike. In other words, what is beneficial for someone could be risky or dangerous for another one.


We foresee a future where people can track how molecules move through the environment in real-time, from their own mobile device. We could choose whether to give a walk around a field of blooming roses or avoid the undesirable virus that hides around the corner. We want to bring the user a new way of looking to the environment, and therefore a new way of living.

Our vision is beginning to exist. It is emerging now. And it is manifested when anyone receives a personalized ad, specific information about the traffic density, CO2 concentration, etc. It has received the name of “Internet of Things”, and this is happening with physical, chemical and social indicators. Unfortunately, there are no biological measurements. Why?


The problem of the Internet of Things

Why has not the Internet of Things (IoT) being enriched by the potentiality of Biology? The answer is not straightforward.

Getting accurate biological measurements in a laboratory is feasible. But getting these results in an automated device, placed in the street, in an affordable way is more challenging.

It might be due to the difficulty in the replicability of lab conditions. And there is another key factor to consider: the complexity of automating the lab protocols.

The issues enumerated above is finally what we have considered being worth solving. And we have called it “The Internet of BioThings”.

The Internet of BioThings (IoBT)

Our goal is to manufacture a proof of concept (PoC) of the final device. The initial PoC will be made for OLE1, the major allergen in olive pollen. But the eventual goal is to scale this PoC to a wide range of molecules, as the Internet of BioThings requires.

The device that we have developed has a key functionality: uploading the measurement in real-time to the cloud. To prove this capability, we have developed an initial mockup of an iOS app that simulates a number of nodes that share the surrounding information that the user requires.

Our technology can become real thanks to the aptamers, flexible molecules that can be artificially engineered to recognize almost any kind of molecule.

Aptamers: the core of our device

Aptamers are single stranded DNA molecules. They work in a similar way to antibodies, but they have two main advantages: they are almost inexpensive and much more stable.


We have chosen aptamers because they are stable and affordable. We need them to be stable, because their nominal working conditions are going to be outdoors, outside the lab environment, in a tougher scenario. And we want them to be affordable because we want to place a huge number of devices.

Aptamers are designed through an artificial evolution process called Systematic Evolution of Ligands by EXponential Selection (SELEX).

Some iGEM teams have tried to implement the SELEX process looking forward to designing their own aptamers. But nevertheless, due to the high amount of time and cost involved, as well as the complexity of the required techniques, no previous iGEM teams have presented satisfactory results in this field.

We are presenting at iGEM, for the first time, a way of doing the SELEX, reducing both costs and effort, and manufacturing the required component with a 3D printer. The component that makes the difference is a 3D printed eppendorf spin column with nitrocellulose filters.

Our project

Once we have introduced the notions of IoT, IoBT and aptamers, we shall give a brief description of our project. It is based on two processes:

Image Aptamer development

we have optimised the SELEX process in order to reduce expenses. The final goal is to scale the SELEX process to many other aptamers, and therefore generate a way of automating the discovery of aptamers.

Image Device integration

Once aptamers are discovered and provided, we integrate them into the sensor, the main part of our device. The goal is to produce a biosensor able to detect a wide variety of molecules. By replacing the biochip, the same hardware will be capable of returning data related to the inserted chip. It will work as a versatile device that provides different data related to different molecules, that at the same time relates to their correspondent aptamers.


Our device

Our device is the product that puts together the bits and pieces of our project. It has been the outcome of a challenging process and sums up our effort and dedication. We would love to demonstrate how our device works. You can find it in the following link:


For further information about the final prototype, do not hesitate to visit this link:

Final Prototype