Difference between revisions of "Team:Pasteur Paris/Experiments"

Line 142: Line 142:
 
             order:9;
 
             order:9;
 
         }
 
         }
        #vign_4 {
+
 
            order:10;
+
        }
+
  
  
Line 157: Line 155:
 
         }
 
         }
 
         #pan_3 {
 
         #pan_3 {
             order:11;
+
             order:10;
        }
+
        #pan_4 {
+
            order:12;
+
 
         }
 
         }
 +
  
 
         @media screen and (max-width: 850px) and (min-width: 572px) {
 
         @media screen and (max-width: 850px) and (min-width: 572px) {
Line 182: Line 178:
 
                 order: 10;
 
                 order: 10;
 
             }  
 
             }  
            #vign_4 {
 
                order: 11;
 
            }
 
            #pan_4 {
 
                order: 12;
 
            }             
 
 
         }
 
         }
  
Line 211: Line 201:
 
             #pan_3 {
 
             #pan_3 {
 
                 order: 10;
 
                 order: 10;
             }
+
             }          
            #vign_4 {
+
                order: 11;
+
            } 
+
            #pan_4 {
+
                order: 12;
+
            }           
+
 
         }
 
         }
  
Line 467: Line 451:
 
     <h2 style="order:1;width:100%">Microfluidics: microchannel chip</h2>
 
     <h2 style="order:1;width:100%">Microfluidics: microchannel chip</h2>
  
     <p style="text-indent:0px;order:2;margin:2em;width:100%"> We used the microchannel chip to test the effect of NGF on the neuron's growth </p>   
+
     <p style="text-indent:0px;order:2;margin:2em;width:100%"> We used the microchannel chip to test the effect of NGF on the neuron's growth. </p>   
  
 
     <div class="vignette" id="vign_4">
 
     <div class="vignette" id="vign_4">
Line 555: Line 539:
 
</div>
 
</div>
  
 +
<div class="block separator-mark">
 +
</div>
  
 +
<div class="block full" style="display:flex;flex-flow: row wrap;justify-content:center;margin:auto;">
 +
 +
    <h2 style="order:1;width:100%">Microfluidics: well chip</h2>
 +
 +
    <p style="text-indent:0px;order:2;margin:2em;width:100%"> The well chip was designed and made by our team to test the biocompatibility of the nanoporous membrane and the effect of electricity on biofilm growth. </p> 
 +
 +
    <div class="vignette" id="vign_5">
 +
        <div class="vignette_for">
 +
        </div>
 +
       
 +
        <div class="vignette_back" id="back_5">
 +
        </div>
 +
       
 +
        <div class="vignette_text">
 +
            <p style="margin:auto; text-align:center;font-weight:bold;">PDMS Well Chip Mold Fabrication</p>
 +
        </div>
 +
    </div>
 +
 +
    <div class="panel" id="pan_5"  style="text-align:left;">
 +
        <div class="close_button">
 +
        </div>
 +
        <br>
 +
        <p style="text-indent:0px;"> We were allowed to use the molds made by Institut Curie. We were not involved in the process of their fabrication. Here is a short video we made about how these molds were created. </p>
 +
        <br>
 +
        <iframe width="854" height="480" src="https://www.youtube.com/embed/3ivw0Yeeve4" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
 +
        <br>
 +
        </div>
 +
    </div> 
 +
 +
    <script>
 +
         
 +
        var acc = document.getElementsByClassName("vignette_back");
 +
        var i;
 +
 +
        for (i = 5; i < 6; i++) {
 +
            acc[i].addEventListener("click", function() {
 +
 +
                /*get clicked element index*/
 +
                var index = String(this.id).substring(5,6);
 +
 +
                /*locate elements to move*/
 +
                var panel = document.getElementById("pan_"+index);
 +
                var vignFor = this.previousElementSibling;
 +
                var vignText = this.nextElementSibling;
 +
                /*move it*/
 +
                if (panel.style.maxHeight){
 +
 +
                    /*close it*/
 +
                    panel.style.maxHeight = null;
 +
                    vignFor.style.opacity = 1;
 +
                    vignText.style.opacity = 0.8;
 +
                    vignText.style.top = "4em";
 +
                }
 +
                else {
 +
                   
 +
                    /*find active element*/
 +
                    var j;
 +
                    var index_act = -1 ;
 +
                    var el_foc;
 +
                    for (j = 5; j < 6; j++) {
 +
                        el_foc=document.getElementById("pan_"+j);
 +
                        if (el_foc.style.maxHeight != 0) {
 +
                            index_act=j;
 +
                            break;
 +
                        }
 +
                    }
 +
                    if (index_act != -1) {
 +
                        /*close active element*/
 +
                        var panel_act = document.getElementById("pan_"+index_act);
 +
                        var back_act = document.getElementById("back_"+index_act);
 +
                        var for_act=back_act.previousElementSibling;
 +
                        var text_act=back_act.nextElementSibling;
 +
                        panel_act.style.maxHeight = null;
 +
                        for_act.style.opacity = 1;
 +
                        text_act.style.opacity = 0.8;
 +
                        text_act.style.top = "4em";
 +
                    }
 +
 
 +
 +
                    /*open clicked element*/
 +
                    panel.style.maxHeight = panel.scrollHeight + "px";
 +
                    vignFor.style.opacity = 0;
 +
                    vignText.style.opacity = 1;
 +
                    vignText.style.top = "15em";
 +
                }
 +
            });
 +
        }
 +
 +
    </script>
 +
 +
</div>
  
  

Revision as of 13:03, 20 August 2018

""

PROTOCOLS

Microfluidics: general protocols

PDMS (Polydimethylsiloxane) is a widely used polymer in microfluidics, for its biocompatibility and transparence, among other qualities. Here we show how to prepare PDMS for microfluidic chips, as well as how to demold them, bond them to other surfaces and treat them for neuron growth. Also, we explain how our molds and chips were fabricated.

PDMS Chips Fabrication

PDMS Chip Demolding

PDMS Chip Bonding

PDMS Chip Treatment for Nerve Growth


Materials

  • Sylgard 184 Elastomer Kit (Sigma-aldrich, 761036-5EA)
  • Vacuum pump unit (Vacuubrand PC 3 RZ 2.5)
  • Stove (Memmert UM 400)

Protocol

According to manufacturer's instruction.

  • Mix monomer and curing agent (10:1 proportion) for 30 seconds
  • Use a vacuum pump unit and a vacuum bell jar to extract air bubbles until the mixture is clear
  • Pour mixture onto mold
  • Put mixture+mold in stove at 70 degrees Celsius for 3 hours

Get full protocol here



Materials

  • Razor blade (OEMTOOLS 25181 Razor Blades, 100 Pack)
  • Biopsy puncher (Kai Biopsy Punch 4mm )

Protocol


  • Cut the borders of the chip with the razor blade
  • Extract the chip from its mold
  • Drill input and output holes with the biopsy puncher

Get full protocol here



Materials

  • Plasma cleaner (Diener Pico PCCE)
  • Distilled water (Fisherbrand, CAS number 7732-18-5)
  • Isopropanol (Fisherbrand, CAS number 67-63-0)
  • Office duct tape
  • Vertical laminar airflow cabinets (Euroclone aura vertical S.D.4)

Protocol


  • Take chip and the surface it needs to be bonded to into the airflow cabinet
  • Clean chip with duct tape and isopropanol
  • Put the chip and the surface into the plasma cleaner.
  • Expose chip and surface 30 seconds to plasma.
  • Take the chip and the surface back in the airflow cabinet
  • Press the microfluidic chip against the surface
  • Insert distilled water into chip circuitry

  • Get full protocol here



Materials

  • Poly-D-Lysine solution 1.0 mg/mL (Sigma aldrich, A-003-E)
  • Laminin (Sigma aldrich, Laminin from Engelbreth-Holm-Swarm murine sarcoma basement membrane, L2020-1MG)

Protocol


  • Pour poly-D-lysine with concentration 10 &mu g/mL into the chip
  • Incubate over night
  • Pour laminine with concentration 4 &mu g/mL
  • Incubate for a few hours

  • Get full protocol here


Microfluidics: microchannel chip

We used the microchannel chip to test the effect of NGF on the neuron's growth.

PDMS Microchannel Chip Mold Fabrication


We were allowed to use the molds made by Institut Curie. We were not involved in the process of their fabrication. Here is a short video we made about how these molds were created.



Microfluidics: well chip

The well chip was designed and made by our team to test the biocompatibility of the nanoporous membrane and the effect of electricity on biofilm growth.

PDMS Well Chip Mold Fabrication


We were allowed to use the molds made by Institut Curie. We were not involved in the process of their fabrication. Here is a short video we made about how these molds were created.