Line 550: | Line 550: | ||
<p style="text-indent:0px;order:2;margin:2em;width:100%"> The well chip was designed and made by our team to test the biocompatibility of the nanoporous membrane and the effect of electricity on biofilm growth. </p> | <p style="text-indent:0px;order:2;margin:2em;width:100%"> The well chip was designed and made by our team to test the biocompatibility of the nanoporous membrane and the effect of electricity on biofilm growth. </p> | ||
− | <div class="vignette" id=" | + | <div class="vignette" id="vign_0100"> |
− | <div class="vignette_for" id=" | + | <div class="vignette_for" id="for_0100"> |
</div> | </div> | ||
− | <div class="vignette_back" id=" | + | <div class="vignette_back" id="back_0100"> |
</div> | </div> | ||
Line 563: | Line 563: | ||
− | <div class="panel" id=" | + | <div class="panel" id="pan_0100" style="text-align:left;"> |
<div class="close_button"> | <div class="close_button"> | ||
</div> | </div> | ||
Line 585: | Line 585: | ||
var cont_index = "01"; | var cont_index = "01"; | ||
/*get clicked element index*/ | /*get clicked element index*/ | ||
− | var index = String(this.id).substring(7, | + | var index = String(this.id).substring(7,9); |
/*locate elements to move*/ | /*locate elements to move*/ | ||
Line 607: | Line 607: | ||
var el_foc; | var el_foc; | ||
for (j = 0; j < vign_back_lis.length; j++) { | for (j = 0; j < vign_back_lis.length; j++) { | ||
− | + | if (j<10) { | |
− | + | el_foc=document.getElementById("pan_" + cont_index + "0" + j); | |
− | + | if (el_foc.style.maxHeight != 0) { | |
− | break; | + | index_act="0"+j; |
+ | break; | ||
+ | } | ||
+ | } else { | ||
+ | el_foc=document.getElementById("pan_" + cont_index + j); | ||
+ | if (el_foc.style.maxHeight != 0) { | ||
+ | index_act=j; | ||
+ | break; | ||
+ | } | ||
} | } | ||
} | } | ||
Line 656: | Line 664: | ||
</div> | </div> | ||
− | <div class="block full" style="display:flex;flex-flow: row wrap;justify-content:center;margin:auto;"> | + | <div class="block full" id="micro_2" style="display:flex;flex-flow: row wrap;justify-content:center;margin:auto;"> |
<h2 style="order:1;width:100%">Microfluidics: microchannel chip</h2> | <h2 style="order:1;width:100%">Microfluidics: microchannel chip</h2> | ||
Line 662: | Line 670: | ||
<p style="text-indent:0px;order:2;margin:2em;width:100%"> We used the microchannel chip to test the effect of NGF on the neuron's growth. </p> | <p style="text-indent:0px;order:2;margin:2em;width:100%"> We used the microchannel chip to test the effect of NGF on the neuron's growth. </p> | ||
− | <div class="vignette" id=" | + | <div class="vignette" id="vign_0200"> |
− | <div class="vignette_for" id=" | + | <div class="vignette_for" id="for_0200"> |
</div> | </div> | ||
− | <div class="vignette_back" id=" | + | <div class="vignette_back" id="back_0200"> |
</div> | </div> | ||
Line 674: | Line 682: | ||
</div> | </div> | ||
− | + | <div class="panel" id="pan_0200" style="text-align:left;"> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | <div class="panel" id=" | + | |
<div class="close_button"> | <div class="close_button"> | ||
</div> | </div> | ||
Line 722: | Line 691: | ||
<script> | <script> | ||
− | + | var cont = document.getElementById("micro_2"); | |
− | var | + | var vign_back_lis = cont.getElementsByClassName("vignette_back"); |
var i; | var i; | ||
− | for (i = | + | for (i = 0; i < vign_back_lis.length; i++) { |
− | + | vign_back_lis[i].addEventListener("click", function() { | |
− | + | var cont = document.getElementById("micro_2"); | |
+ | var vign_back_lis = cont.getElementsByClassName("vignette_back"); | ||
+ | var cont_index = "02"; | ||
/*get clicked element index*/ | /*get clicked element index*/ | ||
− | var index = String(this.id).substring( | + | var index = String(this.id).substring(7,9); |
/*locate elements to move*/ | /*locate elements to move*/ | ||
− | var panel = document.getElementById("pan_"+index); | + | var panel = document.getElementById("pan_"+cont_index+index); |
var vignFor = this.previousElementSibling; | var vignFor = this.previousElementSibling; | ||
var vignText = this.nextElementSibling; | var vignText = this.nextElementSibling; | ||
Line 751: | Line 722: | ||
var index_act = -1 ; | var index_act = -1 ; | ||
var el_foc; | var el_foc; | ||
− | for (j = | + | for (j = 0; j < vign_back_lis.length; j++) { |
− | + | if (j<10) { | |
− | + | el_foc=document.getElementById("pan_" + cont_index + "0" + j); | |
− | + | if (el_foc.style.maxHeight != 0) { | |
− | break; | + | index_act="0"+j; |
+ | break; | ||
+ | } | ||
+ | } else { | ||
+ | el_foc=document.getElementById("pan_" + cont_index + j); | ||
+ | if (el_foc.style.maxHeight != 0) { | ||
+ | index_act=j; | ||
+ | break; | ||
+ | } | ||
} | } | ||
} | } | ||
− | |||
if (index_act != -1) { | if (index_act != -1) { | ||
/*close active element*/ | /*close active element*/ | ||
− | var panel_act = document.getElementById("pan_"+index_act); | + | var panel_act = document.getElementById("pan_"+cont_index+index_act); |
− | var back_act = document.getElementById("back_"+index_act); | + | var back_act = document.getElementById("back_"+cont_index+index_act); |
var for_act=back_act.previousElementSibling; | var for_act=back_act.previousElementSibling; | ||
var text_act=back_act.nextElementSibling; | var text_act=back_act.nextElementSibling; | ||
Line 770: | Line 748: | ||
text_act.style.top = "4em"; | text_act.style.top = "4em"; | ||
} | } | ||
− | |||
/*open clicked element*/ | /*open clicked element*/ |
Revision as of 20:27, 22 August 2018
PROTOCOLS
Microfluidics: general protocols
PDMS (Polydimethylsiloxane) is a widely used polymer in microfluidics, for its biocompatibility and transparence, among other qualities. Here we show how to prepare PDMS for microfluidic chips, as well as how to demold them, bond them to other surfaces and treat them for neuron growth. Also, we explain how our molds and chips were fabricated.
PDMS Chips Fabrication
PDMS Chip Demolding
PDMS Chip Bonding
PDMS Chip Treatment for Nerve Growth
Materials
- Sylgard 184 Elastomer Kit (Sigma-aldrich, 761036-5EA)
- Vacuum pump unit (Vacuubrand PC 3 RZ 2.5)
- Stove (Memmert UM 400)
Protocol
According to manufacturer's instruction.
- Mix monomer and curing agent (10:1 proportion) for 30 seconds
- Use a vacuum pump unit and a vacuum bell jar to extract air bubbles until the mixture is clear
- Pour mixture onto mold
- Put mixture+mold in stove at 70 degrees Celsius for 3 hours
Get full protocol here
Materials
- Razor blade (OEMTOOLS 25181 Razor Blades, 100 Pack)
- Biopsy puncher (Kai Biopsy Punch 4mm )
Protocol
- Cut the borders of the chip with the razor blade
- Extract the chip from its mold
- Drill input and output holes with the biopsy puncher
Get full protocol here
Materials
- Plasma cleaner (Diener Pico PCCE)
- Distilled water (Fisherbrand, CAS number 7732-18-5)
- Isopropanol (Fisherbrand, CAS number 67-63-0)
- Office duct tape
- Vertical laminar airflow cabinets (Euroclone aura vertical S.D.4)
Protocol
- Take chip and the surface it needs to be bonded to into the airflow cabinet
- Clean chip with duct tape and isopropanol
- Put the chip and the surface into the plasma cleaner.
- Expose chip and surface 30 seconds to plasma.
- Take the chip and the surface back in the airflow cabinet
- Press the microfluidic chip against the surface
- Insert distilled water into chip circuitry
Get full protocol here
Materials
- Poly-D-Lysine solution 1.0 mg/mL (Sigma aldrich, A-003-E)
- Laminin (Sigma aldrich, Laminin from Engelbreth-Holm-Swarm murine sarcoma basement membrane, L2020-1MG)
Protocol
- Pour poly-D-lysine with concentration 10 &mu g/mL into the chip
- Incubate over night
- Pour laminine with concentration 4 &mu g/mL
- Incubate for a few hours
Get full protocol here
Microfluidics: well chip
The well chip was designed and made by our team to test the biocompatibility of the nanoporous membrane and the effect of electricity on biofilm growth.
PDMS Well Chip Mold Fabrication
We were allowed to use the molds made by Institut Curie. We were not involved in the process of their fabrication. Here is a short video we made about how these molds were created.
Microfluidics: microchannel chip
We used the microchannel chip to test the effect of NGF on the neuron's growth.
PDMS Microchannel Chip Mold Fabrication
We were allowed to use the molds made by Institut Curie. We were not involved in the process of their fabrication. Here is a short video we made about how these molds were created.