Difference between revisions of "Team:Peking/Project overview"

 
(41 intermediate revisions by 2 users not shown)
Line 6: Line 6:
 
     <head>
 
     <head>
 
         <!--- Basic Page Needs========================================================================= -->
 
         <!--- Basic Page Needs========================================================================= -->
         <meta charset="utf-8"/>
+
         <meta charset="utf-8">
        <title></title>
+
            <title>Team</title>
        <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" />
+
            <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" />
        <meta name="description" content="Wiki of Peking iGEM 2016" />
+
            <meta name="description" content="Wiki of Peking iGEM 2018" />
        <meta name="author" content="Li Jiamian & Wang Yuqing"/>
+
            <meta name="author" content="Peking iGEM">
        <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+
                <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
        <!-- Mobile Specific Metas===================================================================== -->
+
                <!Mobile Specific Metas===================================================================== -->
        <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
+
                <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
        <!-- Fix  Overwrite the original iGEM style=================================================== -->
+
                    <!-- Fix  Overwrite the original iGEM style=================================================== -->
        <link href="https://2016.igem.org/Template:Peking/css/fix?action=raw&ctype=text/css" rel="stylesheet" />
+
                    <link href="https://2018.igem.org/Template:Peking/css/fix?action=raw&ctype=text/css" rel="stylesheet" />
        <!-- CSS======================================================================================= -->
+
                    <!-- CSS======================================================================================= -->
        <link href="https://2016.igem.org/Template:Peking/css/bootstrap_min?action=raw&ctype=text/css" rel="stylesheet" />
+
                    <link href="https://2018.igem.org/Template:Peking/css/bootstrap_min?action=raw&ctype=text/css" rel="stylesheet" />
        <link href="https://2016.igem.org/Template:Peking/css/style?action=raw&ctype=text/css" rel="stylesheet" />
+
                    <link href="https://2018.igem.org/Template:Peking/css/style?action=raw&ctype=text/css" rel="stylesheet" />
        <!-- CSS======================================================================================= -->
+
                    <!-- flexslider================================================================================ -->
        <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/default?action=raw&ctype=text/css"/>
+
                    <link rel="stylesheet" type="text/css" media="all" href="https://2018.igem.org/Template:Peking/css/t2?action=raw&ctype=text/css" />
        <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css"/>
+
                    <link rel='stylesheet' id='responsive-css'  href='https://2018.igem.org/Template:Peking/css/responsive?action=raw&ctype=text/css' type='text/css' media='all' />
        <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css"/>
+
                        <link rel='stylesheet' id='polaroid-slider-css'  href='https://2018.igem.org/Template:Peking/css/t1?action=raw&ctype=text/css' type='text/css' media='all' />
        <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/notebook_panel?action=raw&ctype=text/css"/>
+
                        <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery?action=raw&ctype=text/javascript'></script>
        <style>
+
                        <!-- CSS======================================================================================= -->
            .texttitle{
+
                        <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/default?action=raw&ctype=text/css">
                color:#6495ED;
+
                        <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css">
                font-size: 38px;
+
                        <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css">
                line-height: 48px;
+
                        </head>
                margin-bottom: 12px;
+
                       
                font-family: raleway-bold, sans-serif !important;
+
                        <style>
                background: transparent;
+
                        body { background: #D2D8D8 url(https://static.igem.org/mediawiki/2018/7/78/T--Peking--images_bodyBackground.jpeg); background-attachment:fixed;}
                letter-spacing: 3px;
+
                        .texttitle{
                text-transform: uppercase;
+
                        color: #11abb0;
                font-weight: 350;
+
                        font-size: 38px;
                text-align: center;
+
                        line-height: 48px;
                padding-top:40px;
+
                        margin-bottom: 12px;
            }
+
                        font-family: raleway-bold, sans-serif !important;
        sup{font-size:11px;}
+
                        background: transparent;
        .references{margin-top:150px;margin-bottom:40px;}
+
                        letter-spacing: 3px;
        .references p{font-size:14px !important; color:#666161 !important;}
+
                        text-transform: uppercase;
        .classic-title {font-weight: 300;padding-top:30px;}
+
                        font-weight: 350;
        .classic-title span {
+
                        text-align: center;
            padding-bottom: 8px;
+
                        padding-top:40px;
            border-bottom: 1px solid #383232;
+
                        }
            font-weight: 400;
+
                        sup{font-size:11px;}
        }
+
                        .references{margin-top:150px;margin-bottom:40px;}
        figure{margin-top:40px;margin-bottom:40px;height:auto;}
+
                        .references p{font-size:14px !important; color:#666161 !important;}
        .anchor{padding-top:100px;margin-top:-100px;}
+
                        .classic-title {font-weight: 300;padding-top:30px;}
            </style>
+
                        .classic-title span {
 +
                        padding-bottom: 8px;
 +
                        border-bottom: 1px solid #383232;
 +
                        font-weight: 400;
 +
                        }
 +
                        figure{margin-top:40px;margin-bottom:40px;height:auto;}
 +
                        .anchor{padding-top:100px;margin-top:-100px;}
 +
                        </style>
 +
 
 
          
 
          
 
     </head>
 
     </head>
Line 218: Line 226:
 
         <!--panel 引用 end ==================-->
 
         <!--panel 引用 end ==================-->
 
          
 
          
          <!-- Navigation -->
+
  <!-- Navigation -->
 
         <div id="navigation" class="navbar navbar-fixed-top">
 
         <div id="navigation" class="navbar navbar-fixed-top">
 
             <div class="navbar-inner ">
 
             <div class="navbar-inner ">
Line 235: Line 243:
 
                             <li class="dropdown menu-2"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Project</a>
 
                             <li class="dropdown menu-2"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Project</a>
 
                                 <ul class="dropdown-menu">
 
                                 <ul class="dropdown-menu">
                                     <li><a href="https://2018.igem.org/Team:Peking/Project" class="barfont1">Description</a></li>
+
                                     <li><a href="https://2018.igem.org/Team:Peking/Project_overview" class="barfont1">Description</a></li>
 
                                     <li><a href="https://2018.igem.org/Team:Peking/Design" class="barfont1">Design</a></li>
 
                                     <li><a href="https://2018.igem.org/Team:Peking/Design" class="barfont1">Design</a></li>
 
                                     <li><a href="https://2018.igem.org/Team:Peking/Demonstrate" class="barfont1">Demonstration</a></li>
 
                                     <li><a href="https://2018.igem.org/Team:Peking/Demonstrate" class="barfont1">Demonstration</a></li>
                                     <li><a href="https://2018.igem.org/Team:Peking/Prospective" class="barfont1">Prospective</a></li>
+
                                     <li><a href="https://2018.igem.org/Team:Peking/Project_Perspective" class="barfont1">Perspective</a></li>
 
                                 </ul>
 
                                 </ul>
 
                             </li>
 
                             </li>
 
                             <li class="dropdown menu-3"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Modeling</a>
 
                             <li class="dropdown menu-3"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Modeling</a>
 
                                 <ul class="dropdown-menu">
 
                                 <ul class="dropdown-menu">
                                     <li><a href="https://2018.igem.org/Team:Peking/Project_overview">Overview</a></li>
+
                                     <li><a href="https://2018.igem.org/Team:Peking/Model">Overview</a></li>
 
                                     <li><a href="https://2018.igem.org/Team:Peking/SPOT_Formation" class="barfont1">SPOT Formation</a></li>
 
                                     <li><a href="https://2018.igem.org/Team:Peking/SPOT_Formation" class="barfont1">SPOT Formation</a></li>
 
                                     <li><a href="https://2018.igem.org/Team:Peking/Application" class="barfont1">Application</a></li>
 
                                     <li><a href="https://2018.igem.org/Team:Peking/Application" class="barfont1">Application</a></li>
Line 251: Line 259:
 
                             </li>
 
                             </li>
  
 
+
                            <li class="menu-6"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Human_Practices">Human Practices</a>
                                <li class="dropdown menu-6"><a class="dropdown-toggle" data-toggle="dropdown" href="#">Human Practices</a>
+
                            </li>
                                    <ul class="dropdown-menu">
+
                                 <li class="dropdown menu-7"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Achievement</a>
                                        <li><a href="https://2018.igem.org/Team:Peking/Human_Practices" class="barfont1">Overview</a></li>
+
                                        <li><a href="https://2018.igem.org/Team:Peking/Statistics" class="barfont1">Statistics</a></li>
+
                                        <li><a href="https://2018.igem.org/Team:Peking/Public_Engagement" class="barfont1">Public Engagement</a></li>
+
                                        <li><a href="https://2018.igem.org/Team:Peking/Other" class="barfont1">Other</a></li>
+
                                    </ul>
+
                                </li>
+
                                 <li class="dropdown menu-7"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Achevement</a>
+
 
                                     <ul class="dropdown-menu">
 
                                     <ul class="dropdown-menu">
 
                                         <li><a href="https://2018.igem.org/Team:Peking/Judging_Form" class="barfont1">Judging Form</a></li>
 
                                         <li><a href="https://2018.igem.org/Team:Peking/Judging_Form" class="barfont1">Judging Form</a></li>
Line 276: Line 277:
 
                                         <li><a href="https://2018.igem.org/Team:Peking/Collaborations" class="barfont1">Collaborations</a></li>
 
                                         <li><a href="https://2018.igem.org/Team:Peking/Collaborations" class="barfont1">Collaborations</a></li>
 
                                         <li><a href="https://2018.igem.org/Team:Peking/Safety" class="barfont1">Safety</a></li>
 
                                         <li><a href="https://2018.igem.org/Team:Peking/Safety" class="barfont1">Safety</a></li>
                                    </ul>
+
                                                                            <li><a href="https://2018.igem.org/Team:Peking/Acknowledgement" class="barfont1">Acknowledgement</a></li></ul>
 
                                 </li>
 
                                 </li>
 
                                 </div>
 
                                 </div>
Line 283: Line 284:
 
         </div>
 
         </div>
 
         <!--/Navigation -->
 
         <!--/Navigation -->
 +
       
 
          
 
          
 
          
 
          
Line 307: Line 309:
 
                             <div id="page-wrap">
 
                             <div id="page-wrap">
 
                                 <div id="sidebar" style="color:#000000">
 
                                 <div id="sidebar" style="color:#000000">
                                     <h4><a href="javascript:void(0);" onclick="naver('A')">Overview</a></h4>
+
                                     <h4><a href="https://2018.igem.org/Team:Peking/Project_Overview">Description</a></h4>
                                     <h4><a href="javascript:void(0);" onclick="naver('B')">Design</a></h4>
+
                                     <h4><a href="https://2018.igem.org/Team:Peking/Design">Design</a></h4>
                                     <h4><a href="javascript:void(0);" onclick="naver('C')">Demonstration</a></h4>
+
                                     <h4><a href="https://2018.igem.org/Team:Peking/Demonstration">Demonstration</a></h4>
                                     <ul>
+
                                     <h4><a href="https://2018.igem.org/Team:Peking/Perspective">Perspective</a></h4>
                                        <li><a href="javascript:void(0);" onclick="naver('C1')">SPOT formation</a></li>
+
 
                                        <li><a href="javascript:void(0);" onclick="naver('C2')">Application</a></li>
+
                                    </ul>
+
                                    <h4><a href="javascript:void(0);" onclick="naver('D')">Perspective</a></h4>
+
 
                                    
 
                                    
 
                                 </div>
 
                                 </div>
Line 325: Line 324:
 
                         <div class="nine columns">
 
                         <div class="nine columns">
 
                              
 
                              
                             <div class="texttitle">Overview
+
                             <div class="texttitle">Descripition
 
<a id="A"></a></div>  
 
<a id="A"></a></div>  
 
                             <hr style="border:2px dashed; height:2px" color="#666666">
 
                             <hr style="border:2px dashed; height:2px" color="#666666">
Line 332: Line 331:
 
                                  
 
                                  
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>The aim of our project is to build a synthetic organelle based on phase separation as a multifunctional platform. Based on the principle of multivalence and interaction, we fused interactional modules into homo-oligomeric tags (HOtags) to form granules in S. cerevisiae.</p>
+
                                     <p>Ever since the beginning of life, compartmentalization has been playing a crucial role in biological systems. The famous Miller-Urey experiment shows that inorganic molecules can be transformed into organic substances under extreme conditions, catalyzed by, for example, lightnings. However, homogeneously distributed organic matter is not enough for life to emerge. It is almost impossible that all conditions are appropriate for life in the entire primordial soup, that is where the compartments come in.
 +
<br /><br />
 +
Only after coacervate droplets form and organic molecules condense inside, can a completely different environment be attained within, thus enabling the emergence of bio-macromolecules, or in other words, making life possible.In higher cells, compartmentalization is mainly achieved by different organelles, i.e. mitochondria, chloroplasts, lysosomes, etc. They play three major roles: isolation, special environment, localization.
 +
<br /><br />
 +
Intuitively, for an organelle to remain a stable compartment, it must acquire a material boundary, or more precisely, a membrane. Membrane-bound organelles are indeed common and stable, but from the perspective of synthesis, they are too complicated for primordial conditions. However, there are also non-membrane-bound organelles, for instance, stress granules, P granules and nucleoli. More importantly, their formation is guided by simple physical principles. Membrane-less organelles and phase separation. Next came the question how can we synthase membrane-less organelles.
 +
<br /><br />
 +
According to physical chemistry, the process where materials self-assemble into organelles is described as ‘phase separation’, which is the conversion of a single-phase system into a multiphase system, much like how oil and water will spontaneously separate from each other. In general, materials flow to regions with low chemical potential instead of low concentration(Figure. 1). Finally, the components are no longer distributed uniformly but locally form granules, which are organelles in the cell(Figure. 2).
 +
<div align="center"><br /><br /><img src="https://static.igem.org/mediawiki/2018/8/80/T--Peking--project_overview2.png", width="300 px" "height="300 px"><br/>
 +
<p style="text-align:center;"> Figure. 1: Materials flow to regions with low chemical potential<sup>[1]</sup>. </p>
 +
<img src="https://static.igem.org/mediawiki/2018/3/3e/T--Peking--project_overview3.gif" width="300px" "height="300 px"></div>
 +
<p style="text-align:center;">Figure. 2: The components are no longer distributed uniformly but locally form granules</p>
 +
<br/>
 +
<p style="style="text-align:justify; text-justify:inter-ideograph;">
 +
Therefore, the main challenge in the synthesis of an organelle is to accomplish phase separation in a cell. We took our inspiration from existing living systems. For example, stress granules and P bodies are formed by the interaction between mRNA and proteins. RNA and proteins play a significant part in the phase separation in cells. IDR (Intrinsic Disordered Regions) are an indicator of large-scale phase separation in the cell. IDR interact with each other through van der Waals forces, electrostatic and hydrophobic effects between amino acid residues, while RNA molecules combine with proteins through their bases and ribose-phosphate chain. Previous work attempted to reproduce natural phase separation by connecting interaction modules such as SUMO/SIM and SH3/PRM to construct granules in the cell(Figure. 3).
 +
<br /><br />
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/8/8b/T--Peking--project_overview4.png" width="600 px" "height="350 px"><br /><br />
 +
<p style="text-align:center;">Figure. 3: Both natural and artificial have manifested multivalence<sup>[1]</sup>.</p>
 +
</div>
 +
<p style="text-align:justify; text-justify:inter-ideograph;">
 +
Summarizing these examples and according to physical principles, interaction between modules and multivalency are essential for phase separation. In general, interaction binds the parts together and multivalency results in larger assemblies, which are two guiding principles of our design(Figure. 4).</p><br /><br />
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/a/ab/T--Peking--project_overview5.png" width="600 px" "height="350 px">
 +
<p style="text-align:center;"> Figure. 4: Interaction and multivalence are essential for phase separation. <p>
 +
</div>
 +
</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
Line 344: Line 366:
 
                                  
 
                                  
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>It inspired us to propose some specific applications of our synthetic organelles, including organization hub, sensor, and metabolism regulator. We have verified the feasibility of them by loading GFP-nanobody module, NAD+ sensor module and carotene production module to the whole system.</p>
+
                                     <p>It inspired us to propose some specific applications of our synthetic organelles, including organization hub, sensor, and metabolism regulator. We have verified the feasibility of them by loading GFP-nanobody module, ABA sensor module and carotene production module to the whole system.</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
Line 350: Line 372:
 
                                  
 
                                  
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>We believe that our work has reached the medal requirements of demonstration as we have confirmed that our synthetic organelles can be formed in vivo and deliver a range of functions both for engineering and research due to their amazing properties. The concrete demonstration of the whole platform is shown below. You can see more details of experiments and modeling in our <a href="https://2018.igem.org/Team:Peking/Results"/>Data Page</a> and <a href="https://2018.igem.org/Team:Peking/Model"/>Modeling</a></p><br/><br/><br/>       
+
                                     <p>We believe that our work has reached the medal requirements of demonstration as we have confirmed that our synthetic organelles can be formed in vivo and deliver a range of functions both for engineering and research due to their amazing properties. The concrete demonstration of the whole platform is shown below. You can see more details of experiments and modeling in our <a href="https://2018.igem.org/Team:Peking/Notebook"/>Notebook</a> and <a href="https://2018.igem.org/Team:Peking/Model"/>Modeling</a></p><br/><br/><br/>       
                                </div>
+
                            </div>
+
         
+
                   
+
  
<div class="texttitle">Phase Separation System
 
<a id="B"></a></div>
 
                            <hr style="border:2px dashed; height:2px" color="#1E90FF">
 
                            <div class="coll">
 
                                <div class="info">
 
<a id="B1"></a>
 
                                    <div class="ordi">1.</div>
 
                                </div>
 
                                <div class="content">
 
                                    <h3>Spontaneous and induced synthetic organelles can be formed by phase separation</h3>
 
                                </div>
 
                            </div>
 
                           
 
                            <div class="coll">
 
  
                                <div class="content">
+
[1] Banani, S. F., Lee, H. O., Hyman, A. A., & Rosen, M. K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nature reviews Molecular cell biology, 18(5), 285.
                                    <p>Our basic system consists of two components of synthetic organelles. Either of them has a specific HOtag to form homo-oligomers. We expect that they are able to form synthetic organelles due to the principles of phase separation. To verify the feasibility of the design, we fused two fluorescence proteins with the two components of synthetic organelles (Figure1.a) so that we can observe the self-organization of components and the formation of granules under fluorescence microscope.</p>
+
                                </div>
+
                            </div>
+
                           
+
                            <div class="coll">
+
  
                                <div class="content">
 
                                    <p>We used SUMO-SIM interaction module to build a spontaneous organelle. When two components are expressed in yeasts, granules with the two fluorescence proteins can be observed in vivo (Figure1.b). </p>
 
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
                           
+
 
                            <div class="coll">
+
         
 +
                   
  
                                <div class="content">
+
                 
                                    <p>Meanwhile, by rapamycin induced interaction module, FKBP-Frb, we have built an inducible organelle. We can see granules occurs in yeasts within minutes after adding the inducer.</a> </p>
+
                                </div>
+
Figure1.a The basic design of synthetic organelles with florescence reporters. <img src="https://static.igem.org/mediawiki/2018/3/36/T--Peking--Logo.png" style="width:100%;" alt="">(这里可能需要一张cartoon的设计图)
+
            b, c fluorescence images of spontaneous organelles (SUMO-SIM based) and inducible synthetic organelles (FKBP-Frb based, after adding 10000 nM rapamycin)<br/><br/>
+
 
+
                            </div>
+
 
+
 
+
                            <div class="coll">
+
                                <div class="info">
+
<a id="B2"></a>
+
                                    <div class="ordi">2.</div>
+
                                </div>
+
                                <div class="content">
+
                                    <h3>The formation of organelles has flexible but predictable properties and kinetics in different conditions</h3>
+
                                </div>
+
                            </div>
+
                           
+
                            <div class="coll">
+
 
+
                                <div class="content">
+
                                    <p>Then we combined <a href="https://2018.igem.org/Team:Peking/Phase_Separation_M"/>modeling of phase separation</a> and experiment to research the kinetics of the organelles formation process expecting that a well-characterized system can reach its whole potential in complex applications. </p>
+
                                </div>
+
                            </div>
+
                           
+
                            <div class="coll">
+
 
+
                                <div class="content">
+
                                    <p>As the model predicts, the concentration of components and the interaction strength affect the kinetics of phase separation. First we controlled the expression levels of components by using several stable or inducible promoters and observe the system's behavior. We found that the formation of organelles happened in specific promoter combinations and can be controlled by inducible promoters. The analysis result does not only fit well with the simulation, but provides potential methods to control the organelles in applications. </p>
+
                                </div>
+
                            </div>
+
                           
+
 
+
 
+
                            <div class="coll">
+
 
+
                                <div class="content">
+
                                    <p>The strength of interaction modules can be also controlled. In the rapamycin-induced organelle system, changing the concentration of rapamycin will affect the apparent value of K, a parameter reflecting the interaction strength in our model. In a gradient rapamycin-inducing experiment, the delay time from adding inducer to granules formation was found to be shorter when concentration of rapamycin increases. So we have confirmed the influence of two parameters in models and increased the flexibility of our synthetic organelles.</p>
+
                                </div>
+
                            </div>
+
                            <div class="coll">
+
<br/>
+
Figure3 (a) A simulation of organelle formation process in different interaction strength of components.
+
(b) The speed of FKBP-Frb mediated organelle formation increases with the increasing concentration of rapamycin.
+
<br/><br/>
+
 
+
                            </div>                           
+
                            <div class="coll">
+
 
+
                                <div class="content">
+
                                    <p>We also tried to characterized other properties, like the liquid-like property of the synthetic organelles, as they may affect the functions. See more details about our characterizations in <a href="https://2018.igem.org/Team:Peking/Phase_Separation_D"/>DataPage Phase separation</a>.</p><br/><br/><br/>
+
                                </div>
+
                            </div>
+
 
+
                       
+
                           
+
 
+
                            <div class="texttitle">Functional Organelles
+
<a id="C"></a></div>
+
                            <hr style="border:2px dashed; height:2px" color="#666666">
+
                            <div class="coll">
+
                                <div class="content">
+
                                    <p>Since SPOT can form in the cell and be controlled, we go further to consider the functions of SPOT. The functions of SPOT can be descripted in three catalogs: Spatial segmentation, Sensor and metabolic regulation. We verified the spatial segmentation with the condensation of substrates, also we can load the protein we want by fusing it with nanobody. We then verified the sensor with detecting rapamycin and ABA, which shows strong relativity between the concentration and the proportion of yeasts with SPOT. To find the law behind metabolism in the SPOT, we fuse the enzymes that can produce β-carotene into SPOT and measure the difference between with or without SPOT in produce of β-carotene.</p>
+
                                </div>
+
                            </div>
+
                                                       
+
                            <div class="coll">
+
Figure4 (organization hub)
+
Design of GFP-nanobody based system
+
fluorescence images of GFP-nanobody based system
+
Figure5 (sensor)
+
(a)~(?) fluorescence images of sensor based system
+
Figure6 (metabolism)
+
Characterization of carotene production system
+
(phase内和phase外的胡萝卜素生产实验)<br/><br/><br/><br/><br/>
+
 
+
                            </div>
+
                           
+
 
+
                            <div class="texttitle">Perspective
+
<a id="D"></a></div>
+
                            <hr style="border:2px dashed; height:2px" color="#666666">
+
                            <div class="coll">
+
                                <div class="content">
+
                                    <p>SPOT has been well verified and has various functions. And in the future, this modular system will have great potential in science and practice using. SPOT can change the modules to gain more different properties like diverse inducing method, we can also use it as a platform and then load other protein with some interactions like the interaction between nanobody and GFP. What’s more, we might have the ability to form differernt SPOTs in the cell and regulate them respectively. The functions of SPOT can also diverse. We can build a real time sensor for molecule in living cells to monitoring the concentration changing in environment or in cells. More metabolism pathway can be test in SPOT and we will find some laws of the function of regulate the metabolism. To be summary, more achievement is coming true with SPOT.</p>
+
                                </div>
+
                            </div>                           
+
 
                              
 
                              
 
                         </div><!--9 columns end-->
 
                         </div><!--9 columns end-->
Line 493: Line 404:
 
          
 
          
 
          
 
          
        <!-- footer============================================================================== -->
+
     
 +
                                <!-- footer============================================================================== -->
 
         <style>
 
         <style>
 
             footer .copyright span:before {
 
             footer .copyright span:before {
Line 509: Line 421:
 
         </style>
 
         </style>
 
         <footer id="page-footer">
 
         <footer id="page-footer">
 +
<footer id="page-footer">
 +
                <div class="row,row1">
 +
                    <ul class="footer-social">
 +
                        <li class="col-md-6" id="PKU-administration" style="margin-bottom:25px;max-width:300px">
 +
                            <a href="http://dean.pku.edu.cn/pkudean/index.html"><img src="https://static.igem.org/mediawiki/2018/7/7a/T--Peking--images_PKU_Administration_logo.png"></a>
 +
                        </li>
 +
                        <li class="col-md-6" id="PKU-SLS" style="margin-bottom:25px;max-width:300px">
 +
                            <a href="http://www.bio.pku.edu.cn/"><img src="https://static.igem.org/mediawiki/2018/0/04/T--Peking--images_PKU_SLS_logo.png"></a>
 +
                        </li>
 +
                     
 +
                        <li class="col-md-6" id="PKU-CQB" style="margin-bottom:25px;max-width:300px">
 +
                            <a href="http://cqb.pku.edu.cn/en/"><img src="https://static.igem.org/mediawiki/2018/e/e1/T--Peking--images_PKU_CQB_logo.png"></a>
 +
                        </li>
 +
 +
                    </ul>
 +
                </div>
 
             <div class="row">
 
             <div class="row">
 
                 <div class="twelve columns" >
 
                 <div class="twelve columns" >
Line 520: Line 448:
 
                 <div id="go-top" style="display: block;"><a title="Back to Top" href="#">Go To Top</a></div>
 
                 <div id="go-top" style="display: block;"><a title="Back to Top" href="#">Go To Top</a></div>
 
             </div>
 
             </div>
        </footer> <!-- Footer End-->
+
 
       
+
 
       
+
<!-- Footer End-->
        <!-- Java Script======================================================================= -->
+
                       
        <script>window.jQuery || document.write('<script src="https://2016.igem.org/Template:Peking/Javascript/jquery_1_10_2_min?action=raw&ctype=text/javascript"><\/script>')</script>
+
                       
        <script type="text/javascript" src="https://2016.igem.org/Template:Peking/Javascript/jquery_migrate_1_2_1_min?action=raw&ctype=text/javascript"></script>
+
            <!-- Java Script======================================================================= -->
       
+
            <script>window.jQuery || document.write('<script src="https://2018.igem.org/Template:Peking/Javascript/jquery_1_10_2_min?action=raw&ctype=text/javascript"><\/script>')</script>
        <script src="https://2016.igem.org/Template:Peking/Javascript/jquery_flexslider?action=raw&ctype=text/javascript"></script>
+
            <script type="text/javascript" src="https://2018.igem.org/Template:Peking/Javascript/jquery_migrate_1_2_1_min?action=raw&ctype=text/javascript"></script>
        <script src="https://2016.igem.org/Template:Peking/Javascript/doubleaptogo?action=raw&ctype=text/javascript"></script>
+
           
        <script src="https://2016.igem.org/Template:Peking/Javascript/init?action=raw&ctype=text/javascript"></script>
+
            <script src="https://2018.igem.org/Template:Peking/Javascript/jquery_flexslider?action=raw&ctype=text/javascript"></script>
       
+
            <script src="https://2018.igem.org/Template:Peking/Javascript/doubleaptogo?action=raw&ctype=text/javascript"></script>
       
+
            <script src="https://2018.igem.org/Template:Peking/Javascript/init?action=raw&ctype=text/javascript"></script>
        <!--quotations from black: start-->
+
           
        <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery?action=raw&ctype=text/javascript"></script>
+
            <!--quotations from flexslider: start-->
        <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_sticky?action=raw&ctype=text/javascript"></script>
+
            <script src='https://2018.igem.org/Template:Peking/Javascript/modernizr_js?action=raw&ctype=text/javascript'></script>
        <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_easing_1_3_pack?action=raw&ctype=text/javascript"></script>
+
                <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery_polaroid?action=raw&ctype=text/javascript'></script>
        <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/bootstrap_min?action=raw&ctype=text/javascript"></script>
+
                <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery_easing?action=raw&ctype=text/javascript'></script>
        <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_patallax_1_1_3?action=raw&ctype=text/javascript"></script>
+
                <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery_transform_0_8_0_min?action=raw&ctype=text/javascript'></script>
        <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/appear?action=raw&ctype=text/javascript"></script>
+
                <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery_preloader?action=raw&ctype=text/javascript'></script>
        <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/modernizr?action=raw&ctype=text/javascript"></script>
+
                <!--quotations from flexslider: end-->
        <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_prettyPhoto?action=raw&ctype=text/javascript"></script>
+
               
        <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/isotope?action=raw&ctype=text/javascript"></script>
+
                <!--quotations from black: start-->
        <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_bxslider_min?action=raw&ctype=text/javascript"></script>
+
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery?action=raw&ctype=text/javascript"></script>
        <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_cycle_all?action=raw&ctype=text/javascript" ></script>
+
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_sticky?action=raw&ctype=text/javascript"></script>
        <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_maximage?action=raw&ctype=text/javascript"></script>
+
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_easing_1_3_pack?action=raw&ctype=text/javascript"></script>
        <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/scripts?action=raw&ctype=text/javascript "></script>
+
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/bootstrap_min?action=raw&ctype=text/javascript"></script>
        <!--quotations from black: end-->
+
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_patallax_1_1_3?action=raw&ctype=text/javascript"></script>
    </body>
+
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/appear?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/modernizr?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_prettyPhoto?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/isotope?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_bxslider_min?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_cycle_all?action=raw&ctype=text/javascript" ></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_maximage?action=raw&ctype=text/javascript"></script>
 +
                <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/scripts?action=raw&ctype=text/javascript "></script>
 +
                <!--quotations from black: end-->
 +
                           
 +
                           
 +
                            </body>
 
</html>
 
</html>

Latest revision as of 16:42, 16 October 2018

Team

Description

In this section, you could see the demonstration.

Descripition

Ever since the beginning of life, compartmentalization has been playing a crucial role in biological systems. The famous Miller-Urey experiment shows that inorganic molecules can be transformed into organic substances under extreme conditions, catalyzed by, for example, lightnings. However, homogeneously distributed organic matter is not enough for life to emerge. It is almost impossible that all conditions are appropriate for life in the entire primordial soup, that is where the compartments come in.

Only after coacervate droplets form and organic molecules condense inside, can a completely different environment be attained within, thus enabling the emergence of bio-macromolecules, or in other words, making life possible.In higher cells, compartmentalization is mainly achieved by different organelles, i.e. mitochondria, chloroplasts, lysosomes, etc. They play three major roles: isolation, special environment, localization.

Intuitively, for an organelle to remain a stable compartment, it must acquire a material boundary, or more precisely, a membrane. Membrane-bound organelles are indeed common and stable, but from the perspective of synthesis, they are too complicated for primordial conditions. However, there are also non-membrane-bound organelles, for instance, stress granules, P granules and nucleoli. More importantly, their formation is guided by simple physical principles. Membrane-less organelles and phase separation. Next came the question how can we synthase membrane-less organelles.

According to physical chemistry, the process where materials self-assemble into organelles is described as ‘phase separation’, which is the conversion of a single-phase system into a multiphase system, much like how oil and water will spontaneously separate from each other. In general, materials flow to regions with low chemical potential instead of low concentration(Figure. 1). Finally, the components are no longer distributed uniformly but locally form granules, which are organelles in the cell(Figure. 2).




Figure. 1: Materials flow to regions with low chemical potential[1].

Figure. 2: The components are no longer distributed uniformly but locally form granules


Therefore, the main challenge in the synthesis of an organelle is to accomplish phase separation in a cell. We took our inspiration from existing living systems. For example, stress granules and P bodies are formed by the interaction between mRNA and proteins. RNA and proteins play a significant part in the phase separation in cells. IDR (Intrinsic Disordered Regions) are an indicator of large-scale phase separation in the cell. IDR interact with each other through van der Waals forces, electrostatic and hydrophobic effects between amino acid residues, while RNA molecules combine with proteins through their bases and ribose-phosphate chain. Previous work attempted to reproduce natural phase separation by connecting interaction modules such as SUMO/SIM and SH3/PRM to construct granules in the cell(Figure. 3).



Figure. 3: Both natural and artificial have manifested multivalence[1].

Summarizing these examples and according to physical principles, interaction between modules and multivalency are essential for phase separation. In general, interaction binds the parts together and multivalency results in larger assemblies, which are two guiding principles of our design(Figure. 4).



Figure. 4: Interaction and multivalence are essential for phase separation.

We have built spontaneous and induced synthetic organelles by specific interaction modules, so that we can control the formation process by different ways for demands in biological engineering. Then we characterized the kinetics and properties of synthetic organelles theoretically and experimentally. These results confirm the potential of synthetic organelles in synthetic biology.

It inspired us to propose some specific applications of our synthetic organelles, including organization hub, sensor, and metabolism regulator. We have verified the feasibility of them by loading GFP-nanobody module, ABA sensor module and carotene production module to the whole system.

We believe that our work has reached the medal requirements of demonstration as we have confirmed that our synthetic organelles can be formed in vivo and deliver a range of functions both for engineering and research due to their amazing properties. The concrete demonstration of the whole platform is shown below. You can see more details of experiments and modeling in our Notebook and Modeling




[1] Banani, S. F., Lee, H. O., Hyman, A. A., & Rosen, M. K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nature reviews Molecular cell biology, 18(5), 285.