Difference between revisions of "Team:Calgary/Human Practices"

Line 39: Line 39:
 
                 </h3>
 
                 </h3>
 
                 <h5>
 
                 <h5>
                     Inserting a landing pad into the genome to enable recombination
+
                     Subtitle Here
 
                 </h5>
 
                 </h5>
 
                 <p> CRISPR/Cas9 induces targeted breaks into DNA, allowing for the insertion of
 
                 <p> CRISPR/Cas9 induces targeted breaks into DNA, allowing for the insertion of
Line 60: Line 60:
 
                 </h3>
 
                 </h3>
 
                 <h5>
 
                 <h5>
                     Integrating our desired genes at the landing pad
+
                     Subtitle Here
 
                 </h5>
 
                 </h5>
 
                 <p>
 
                 <p>
Line 91: Line 91:
 
                 </h3>
 
                 </h3>
 
                 <h5>
 
                 <h5>
                     Maintenance of integrated genes via minimization of gene silencing and neighbourhood effects
+
                     Subtitle Here
 
                 </h5>
 
                 </h5>
 
                 <p>Gene inserts are at risk of being rendered ineffective even after successful integration into the
 
                 <p>Gene inserts are at risk of being rendered ineffective even after successful integration into the
Line 103: Line 103:
 
                 </p>
 
                 </p>
 
                 <a href="https://2018.igem.org/Team:Calgary/Chromatin_Modifying_Elements"><button type="button" class="btn btn-outline-dark">Read
 
                 <a href="https://2018.igem.org/Team:Calgary/Chromatin_Modifying_Elements"><button type="button" class="btn btn-outline-dark">Read
                        more</button></a>
 
            </div>
 
        </div>
 
        <hr>
 
        <div class="row">
 
            <div class="col-lg-6 info">
 
                <h3>
 
                    Microfluidics
 
                </h3>
 
                <p>
 
                    Another major hurdle that gene therapies have to overcome is the complexities of scaled-out
 
                    production. To approach this problem, we worked towards developing components of a
 
                    microfluidic system that could enable large scale, end-to-end manufacture of autologous
 
                    gene-therapies. Our Droplet Formation Module is designed for high throughput cell
 
                    encapsulation, and the production of isogenic cell cultures.
 
 
                </p>
 
                <a href="https://2018.igem.org/Team:Calgary/Microfluidics"><button type="button" class="btn btn-outline-dark">Read
 
                        more</button></a>
 
            </div>
 
            <div class="col-lg-6 info">
 
                <h3>
 
                    Software
 
                </h3>
 
                <p>Each year, iGEM teams develop software in conjunction with their research.
 
                    However, it is difficult to efficiently access these tools due to the sheer volume of wiki content.
 
                    Thus, we created an online database called SARA, the Software Aggregating Research Assistant,
 
                    which organizes software tools created by iGEM teams and allows for the simplified searching.
 
                    SARA also provides the opportunity for old software to be updated to stay current,
 
                    and decreases the likelihood that teams will create redundant software.
 
                </p>
 
                <a href="https://2018.igem.org/Team:Calgary/Software"><button type="button" class="btn btn-outline-dark">Read
 
 
                         more</button></a>
 
                         more</button></a>
 
             </div>
 
             </div>

Revision as of 18:14, 17 October 2018

Team:Calgary - 2018.igem.org/Human Practices

HUMAN PRACTICES



COLLABORATIONS

Subtitle Here

CRISPR/Cas9 induces targeted breaks into DNA, allowing for the insertion of foreign DNA sequences into the break site. This method was selected for its targeted insertion ability to knock-in a Flp recognition target (FRT) site into the genome, opening the door to recombination in later steps. The FRT site can be thought of as a target, marking out a site in the genome for precision targeting by recombinase in the following stage. While the maximum knock-in size of CRISPR/Cas9 insertion is limited, the small size of our FRT site is not predicted to cause any errors.

PUBLIC ENGAGEMENT

Subtitle Here

After CRISPR places the FRT site into the genome, recombination can begin. FlpO recombinase is an enzyme which causes the exchange of two pieces of DNA, provided both contain the same FRT site. Thus, by providing recombinant DNA containing the same FRT site as the one inserted into the genome using CRISPR, FlpO will integrate the recombinant DNA into the genome. Our FlpO recombination system also involves a second recombination protein known as Beta resolvase. Following the initial recombination mediated by FlpO, Beta performs a second recombination which removes the undesirable sequences contained on the recombinant plasmid, as well as its FRT site. Not only does this clean up the final insert, but it prevents the insert from being removed by FlpO down the road. If the CRISPR stage of the project is thought of as placing a target in the genome, the recombinase stage is firing DNA at the target for integration.


SAFETY

Subtitle Here

Gene inserts are at risk of being rendered ineffective even after successful integration into the genome, as the spread of heterochromatin and DNA methylation can cause gene silencing. Furthermore, regulatory elements within both the insert and genome near the locus of integration may interact bidirectionally, leading to changes in gene expression known as neighbourhood effects. Chromatin-modifying elements (CMEs) can help to generate an isolated, protected pocket within the genome, thereby assuring stable and sustained expression of integrated genes within eukaryotic systems.