Difference between revisions of "Team:Jilin China/Parts"

 
(4 intermediate revisions by 2 users not shown)
Line 77: Line 77:
 
     <div>
 
     <div>
 
       <h2>Introduction</h2>
 
       <h2>Introduction</h2>
         <p>This year, Jilin_China build hundreds of parts, including 91 basic parts, 6 composite parts and 3 part collection. If you want to see more details, you can find the usage and characterize in the part registry page. You can also visit the basic part, composite part and part collection page for more information.</p>
+
         <p>This year, Jilin_China build hundreds of parts, including 90 basic parts, 7 composite parts and 3 part collections. If you want to see more details, you can find the usage and characterization in the part registry page. You can also visit the basic part, composite part and part collection page for more information.</p>
 
     </div>
 
     </div>
 
     </li>
 
     </li>
Line 89: Line 89:
 
     <div>
 
     <div>
 
       <h2>Reference</h2>
 
       <h2>Reference</h2>
      <li>[1]Neupert, J., Karcher, D., and Bock, R. Design of simple synthetic RNA thermometers for temperature-controlled gene expression in <i>Escherichia coli</i> Nucleic Acids Res.</li>
+
      <ul>
  <li>[2]Narberhaus, F., Waldminghaus, T. & Chowdhury, S. RNA thermometers. FEMS Microbiol. Rev. 30, 3–16 (2006).</li>
+
        <li>[1]Neupert J, Karcher D, Bock R. Design of simple synthetic RNA thermometers for temperature-controlled gene expression, in <i>Escherichia coli</i>.[J]. Nature Protocols, 2008, 4(9):1262-73.</li>
  <li>[3]Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction Nucleic Acids Res. 31, 3406– 3415(2003)</li>
+
  <li>[2]Kortmann J, Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches.[J]. Nature Reviews Microbiology, 2012, 10(4):255-65.</li>
  <li>[4]M V, Jones K, Barillari C, et al. Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone?[J]. Cell Cycle, 2010, 9(8):1542-1550.</li>
+
  <li>[3]Neupert J, Bock R. Designing and using synthetic RNA thermometers for temperature-controlled gene expression in bacteria. Nature Protocols, 2009, 4(9):1262-73.</li>
  <li>[5]Chowdhury, S., Maris, C., Allain, F. H. & Narberhaus, F.Molecular basis for temperature sensing by an RNA thermometer. EMBO J. 25, 2487–2497 (2006).</li>
+
  <li>[4]Sen S, Apurva D, Satija R, et al. Design of a Toolbox of RNA Thermometers[J]. Acs Synthetic Biology, 2017, 6(8).</li>
  <li>[6]Rinnenthal, J., Klinkert, B., Narberhaus, F.& Schwalbe, H. Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res. 38, 3834–3847</li>
+
  <li>[5]Hoynes-O'Connor A, Hinman K, Kirchner L, et al. De novo design of heat-repressible RNA thermosensors in <i>E. coli</i>[J]. Nucleic Acids Research, 2015, 43(12):6166-6179.</li>
  <li>[7]Hoynes-O'Connor A, Hinman K, Kirchner L, et al. De novo design of heat-repressible RNA thermosensors in <i>E.coli</i>[J]. Nucleic Acids Research, 2015, 43(12):6166-6179.</li>
+
  <li>[6]Pertzev A V, Nicholson A W. Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III[J]. Nucleic Acids Research, 2006, 34(13):3708-3721.</li>
  <li>[8]Bouvier,M. and Carpousis,A.J. (2011) A tale of two mRNA degradation pathways mediated by RNase E. Mol. Microbiol., 82,1305–1310.</li>
+
  <li>[7]Giuliodori A M, Di P F, Marzi S, et al. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA.[J]. Molecular Cell, 2010, 37(1):21-33.</li>
  <li>[9]Cameron,J.C., Gordon,G.C. and Pfleger,B.F. (2015) Genetic and genomic analysis of RNases in model cyanobacteria. Photosynth.Res., doi:10.1007/s11120–11015–10076–11122.</li>
+
  <li>[8]Breaker R R. RNA Switches Out in the Cold[J]. Molecular Cell, 2010, 37(1):1-2.</li>
  <li>[10]Pertzev A V, Nicholson A W. Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of <i>Escherichia coli</i> ribonuclease III[J]. Nucleic Acids Research, 2006, 34(13):3708-3721.</li>
+
          <li>[9]Overkamp W, Beilharz K, Detert O W R, et al. Benchmarking various green fluorescent protein variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for live cell imaging.[J]. Applied & Environmental Microbiology, 2013, 79(20):6481-6490.</li>
  <li>[11]Eshwar A K, Guldimann C, Oevermann A, et al. Cold-Shock Domain Family Proteins (Csps) Are Involved in Regulation of Virulence, Cellular Aggregation, and Flagella-Based Motility in Listeria monocytogenes[J]. Frontiers in Cellular & Infection Microbiology, 2017, 7.</li>
+
      </ul>
  <li>[12] Yamanaka K, Mitta M, Inouye M. Mutation Analysis of the 5′ Untranslated Region of the Cold Shock cspA mRNA of <i>Escherichia coli</i>[J]. Journal of Bacteriology, 1999, 181(20):6284.</li>
+
  <li>[13] D G, Azar I, Oppenheim A B. Differential mRNA stability of the cspA, gene in the cold-shock response of <i>Escherichia coli</i>[J]. Molecular Microbiology, 1996, 19(2):241.</li>
+
  <li>[14]Giuliodori A M, Pietro F D, Marzi S, et al. The cspA, mRNA Is a Thermosensor that Modulates Translation of the Cold-Shock Protein CspA[J]. Molecular Cell, 2010, 37(1):21-33.</li>
+
  <li>[15] Brierley I, Pennell S, Gilbert R J C. Viral RNA pseudoknots: versatile motifs in gene expression and replication[J]. Nature Reviews Microbiology, 2007, 5(8): 598.</li>
+
 
     </div>
 
     </div>
 
     </li>
 
     </li>

Latest revision as of 21:43, 17 October 2018

OVERVIEW
PARTS


Parts Overview

  • Introduction

    This year, Jilin_China build hundreds of parts, including 90 basic parts, 7 composite parts and 3 part collections. If you want to see more details, you can find the usage and characterization in the part registry page. You can also visit the basic part, composite part and part collection page for more information.

  • Parts

    <groupparts>iGEM18 Jilin_China</groupparts>
  • Reference

    • [1]Neupert J, Karcher D, Bock R. Design of simple synthetic RNA thermometers for temperature-controlled gene expression, in Escherichia coli.[J]. Nature Protocols, 2008, 4(9):1262-73.
    • [2]Kortmann J, Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches.[J]. Nature Reviews Microbiology, 2012, 10(4):255-65.
    • [3]Neupert J, Bock R. Designing and using synthetic RNA thermometers for temperature-controlled gene expression in bacteria. Nature Protocols, 2009, 4(9):1262-73.
    • [4]Sen S, Apurva D, Satija R, et al. Design of a Toolbox of RNA Thermometers[J]. Acs Synthetic Biology, 2017, 6(8).
    • [5]Hoynes-O'Connor A, Hinman K, Kirchner L, et al. De novo design of heat-repressible RNA thermosensors in E. coli[J]. Nucleic Acids Research, 2015, 43(12):6166-6179.
    • [6]Pertzev A V, Nicholson A W. Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III[J]. Nucleic Acids Research, 2006, 34(13):3708-3721.
    • [7]Giuliodori A M, Di P F, Marzi S, et al. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA.[J]. Molecular Cell, 2010, 37(1):21-33.
    • [8]Breaker R R. RNA Switches Out in the Cold[J]. Molecular Cell, 2010, 37(1):1-2.
    • [9]Overkamp W, Beilharz K, Detert O W R, et al. Benchmarking various green fluorescent protein variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for live cell imaging.[J]. Applied & Environmental Microbiology, 2013, 79(20):6481-6490.