Difference between revisions of "Team:Madrid-OLM/HardawareMicrofluidics"

 
(9 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
<html lang="en">
 
<html lang="en">
 
     <style>
 
     <style>
    .tittle-secc{
+
        .tittle-secc{
             padding-top: 12em !important;
+
             padding-top: 8em !important;
 
         }
 
         }
    .ourlist{   
+
        .figureimage{
        font-size: 80% !important;
+
            margin-bottom: 0.5em
        margin-bottom: 1em !important;
+
            }
 +
        .ourlist{   
 +
            font-size: 80% !important;
 
         }
 
         }
    .nomargin{
+
        .nomargin{
 
             margin-bottom: 0.3em !important;
 
             margin-bottom: 0.3em !important;
 
         }
 
         }
    .figureimage{
+
        .lessmar{
             margin-bottom: 0.5em
+
             margin-bottom: 0.8em !important;
            }
+
        }
 
+
        .red{
 
+
            color: red;
 +
        }
 +
   
 
     </style>
 
     </style>
 
+
   
 
     <head>
 
     <head>
 
         <meta charset="utf-8">
 
         <meta charset="utf-8">
         <title>First prototype of the device</title>
+
         <title>Microfluidics part of the device</title>
 
         <meta name="viewport" content="width=device-width, initial-scale=1.0">
 
         <meta name="viewport" content="width=device-width, initial-scale=1.0">
 
         <meta name="description" content="Site Description Here">
 
         <meta name="description" content="Site Description Here">
Line 34: Line 38:
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="#firstass" class="inner-link" data-title="First assumptions"></a>
+
                         <a href="#workflowPDMS" class="inner-link" data-title="Lab workflow for PDMS chips"></a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="#howwork" class="inner-link" data-title="How it Works"></a>
+
                         <a href="#manPMMA" class="inner-link" data-title="Manufacturing the PMMA chips"></a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="#further" class="inner-link" data-title="Further Details"></a>
+
                         <a href="#fluidmech" class="inner-link" data-title="Fluid Mechanics behaviour"></a>
 
                     </li>
 
                     </li>
 +
                   
 
                     <li>
 
                     <li>
                         <a href="#meresult" class="inner-link" data-title="Measurement results"></a>
+
                         <a href="#plamabond" class="inner-link" data-title="Plasma Bonding"></a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="#learned" class="inner-link" data-title="Things we learned while doing"></a>
+
                         <a href="#Injection" class="inner-link" data-title="Injection"></a>
 
                     </li>
 
                     </li>
 +
                      <li>
 +
                        <a href="#improv" class="inner-link" data-title="Further improvements"></a>
 +
                    </li>
 +
                   
 +
                   
 
                 </ul>
 
                 </ul>
 
             </section>
 
             </section>
 
+
           
 
             <section id="home" class="tittle-secc text-center switchable feature-large">
 
             <section id="home" class="tittle-secc text-center switchable feature-large">
 
                 <div class="container">
 
                 <div class="container">
 
                     <div class="row justify-content-around">
 
                     <div class="row justify-content-around">
                         <div class="col-md-10 col-lg-8">
+
                         <div class="col-md-8 col-lg-8">
                             <h1 id="Teamtittle">First prototype</h1>
+
                             <h1 id="Teamtittle">Microfluidics</h1>
                             <p class="lead">The first design was conceived around a number of theoretical guesses that we needed to prove experimentally.</p>
+
                             <p class="lead">When the need of moving microvolumes arises as a mandatory requirement of design, microfluidics pops up as the one and only solution. Although there is at hand a wide range of microfluidic commercial solutions, many of them are too expensive to start experimenting with.</p>
                            <p class="lead">Our first prototype was born to test these assumptions. Some of them worked as expected, but many of them only served as an initial step towards a more concise device.</p>
+
                             <p class="lead">That is why our method comes to give an alternative solution. The <a href="http://www.elveflow.com/microfluidic-tutorials/microfluidic-reviews-and-tutorials/the-poly-di-methyl-siloxane-pdms-and-microfluidics/">PDMS</a> manufacturing reveals itself as a tough rival with respect to other alternatives. Although there is at hand a wide range of microfluidic commercial solutions, many of them are too expensive to start experimenting with.</p>
                             <p class="lead">In the following paragraphs, we want to share our experience working with a new device, an initial prototype, designed by us, and tested to the limit. By learning how to set our prototype up, we were learning about every factor involved in the process. </p>
+
                            <p class="lead">Designing, manufacturing, and testing our devices has been great. Engineering biodevices require theoretical and experimental skills. But what we have learned is the most simple lesson: there is no better way of doing things. The best way of doing anything is doing while learning.</p>
+
 
+
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
Line 67: Line 74:
 
                 <!--end of container-->
 
                 <!--end of container-->
 
             </section>
 
             </section>
 
+
           
             <section id="firstass" class="text-center">
+
             <section id="workflowPDMS" class="text-center">
 
                 <div class="container">
 
                 <div class="container">
 
                     <div class="row">
 
                     <div class="row">
 
                         <div class="col-md-10 col-lg-8 boxed boxed--border bg--secondary boxed--lg box-shadow">
 
                         <div class="col-md-10 col-lg-8 boxed boxed--border bg--secondary boxed--lg box-shadow">
                             <h2>First assumptions</h2>
+
                             <h2>The lab workflow for PDMS chips</h2>
 +
                            <img alt="Image1" src="https://static.igem.org/mediawiki/2018/2/24/T--Madrid-OLM--Device--FinalPrototype--Micro--workflow.png" style="width:100%;"/>
 +
                            <h6 class="lessmar">1-Molding of the upper half</h6>
 
                             <ol class="ourlist">
 
                             <ol class="ourlist">
                                 <li><p class="lead">Immobilized aptamers on a PDMS surface. In order to create an electrostatic and mechanical trap for our targeted protein, we planned to work in a PDMS environment. PDMS is a well-known manufacturing material for electronics. So we could easily integrate PDMS in our device. </p></li>
+
                                 <li><p class="lead"><u>Negative</u>:a laser cuts the tape that is adhered to an acetate. The remaining tape is removed carefully. The channels and the chambers, as well as the input and the output have been cutted and the negative has been created. More info about the protocols involved <a href="https://2018.igem.org/Team:Madrid-OLM/ProManufacturing#MoldM">here</a>.</p></li>
                                 <li><p class="lead">Optical measurement sensor. The materials required to test our sensor were a 280nm UV LED emitter and an LDR. The amount of light traversing the solution was quantified by a drop in voltage across the LDR: with higher protein concentrations, higher absorption is expected together with an increased drop in voltage. </p></li>
+
                                 <img alt="Image1" src="https://static.igem.org/mediawiki/2018/0/00/T--Madrid-OLM--Device--FinalPrototype--Micro--lasercutting.png" style="width:60%;"/>
                                 <li><p class="lead">Microfluidics: for channeling fluids through the chip. Microfluidics allows us to move microliters of samples, minimizing the dead volumes and the waste through the chip.</p></li>
+
                                 <li><p class="lead"><u>Molding box</u>: (Find the polymerization chamber in <a href="http://github.com/OpenLabMadrid/iGEM-Madrid-OLM/tree/master/CAD/Polymerization%20chamber">our github</a>). Once the negative has been created, it is time to align the acetate with the marks in the polymerization chamber. Depending on the chosen configuration, it might be worth to place the perforated base on the bottom of the acetate.</p></li>
                                 <li><p class="lead">Modular design and normalization: We needed to standardize the protocols related to hardware to reduce the number of variables involved. This would restrict the design and manufacture and help us a lot when playing with certain design parameters. </p></li>
+
                                 <li><p class="lead"><u>PDMS casting</u>: PDMS casting was made inside an lab oven most of times. Curing time depended on the drying method selected. More info about the protocols involved <a href="https://2018.igem.org/Team:Madrid-OLM/ProManufacturing#PDMSCas">here</a>.</p></li>
                                 <li><p class="lead">Enable the DIY: We had the need of developing everything in a way such that anyone, regardless his/her origin could replicate our experiments in an affordable and creative way.</p></li>
+
                                 <img alt="Image1" src="https://static.igem.org/mediawiki/2018/b/b1/T--Madrid-OLM--Device--FinalPrototype--Micro--pdmsetup.png" style="width:60%;"/>
 
                             </ol>
 
                             </ol>
 +
                            <h6 class="lessmar">2-Molding of the lower half</h6>
 +
                            <p class="lead">The process is repeated without the negative part of the mold.</p>
 +
                            <h6 class="lessmar">3-Fixing the two halves</h6>
 +
                            <p class="lead">the selected method for fixing both halves was plasma bonding. More info about the protocols involved <a href="https://2018.igem.org/Team:Madrid-OLM/ProManufacturing#PlamsB">here</a>.</p>
 +
                            <h6 class="lessmar">4-Creating the input and the outputs</h6>
 +
                            <p class="lead">We usually used to hole punch the PDMS inlet/outlet with a needle. But we cured the PDMS with a needle inside as another negative volume for molding.More info about the protocols involved <a href="https://2018.igem.org/Team:Madrid-OLM/ProManufacturing#Closingcir">here</a>.</p>
 +
                            <h6 class="lessmar">5-Injecting fluids into the chip</h6>
 +
                            <p class="lead">Automatic controlled microvolume pressure pumps have been developed specifically for our microfluidic chips. Specific plans of the pumps design can be found in <a href="http://github.com/OpenLabMadrid/iGEM-Madrid-OLM/tree/master/CAD/Pressure%20pump">our github</a>. </p>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
Line 86: Line 103:
 
                 <!--end of container-->
 
                 <!--end of container-->
 
             </section>
 
             </section>
 +
           
 +
            <section id="manPMMA" class="text-center">
 +
                <div class="container">
 +
                    <div class="row">
 +
                        <div class="col-md-10 col-lg-8 boxed boxed--border bg--secondary boxed--lg box-shadow">
 +
                            <h2>Manufacturing the PMMA chips</h2>
 +
                            <p class="lead">Although we are proud of having implemented an affordable workflow for developing functional PDMS chips, we manufactured PMMA chips with micromachining techniques.</p>
 +
                            <p class="lead">Our University has a mechanical workshop that usually machines vacuum chambers, or metallic parts of machines, bending aluminum sheets, etc. We visited the workshop and asked the workers how to micromachine a PMMA chip with almost 0.2 mm height and 0.8 channel width. We purchased a 0.4 mm tip diameter and adapted the manufacturing to other available tools. </p>
 +
                            <p class="lead">The input and output needed to be modified, and we used 21G needles (0.8 mm) as inlet and outlet. The fitting was made with High Performance Liquid Chromatography (HPLC) 0.8 mm tubes. They fitted tight enough to avoid leaks.</p>
  
             <section id="howwork" class="text-center">
+
                        </div>
 +
                    </div>
 +
                    <!--end of row-->
 +
                </div>
 +
                <!--end of container-->
 +
            </section>
 +
           
 +
           
 +
             <section id="fluidmech" class="text-center">
 
                 <div class="container">
 
                 <div class="container">
 
                     <div class="row">
 
                     <div class="row">
 
                         <div class="col-md-10 col-lg-8 boxed boxed--border bg--secondary boxed--lg box-shadow">
 
                         <div class="col-md-10 col-lg-8 boxed boxed--border bg--secondary boxed--lg box-shadow">
                             <h2>How it works</h2>
+
                             <h2>Fluid Mechanics behaviour inside the chip</h2>
                            <h4>imagen 4 subsistemas</h4>
+
                             <p class="lead">Once the workflow was designed and implemented, we focused on designing microfluidic concepts that could prove our system right. In this regard, there were some Fluid Mechanics concepts that we wanted to experiment with. This is why we created the following experiments:</p>
                             <p class="lead">The device is divided into four parts. Every subsystem has been conceived to be integrated in a bigger organic whole: the device. </p>
+
 
                             <ol class="ourlist">
 
                             <ol class="ourlist">
                                 <li>
+
                                 <li><p class="lead"><b>Our mixer:</b> Inside the chip, the fluid behaves in a laminar way. There are many <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634658/">papers</a> on this topic.We wanted to test this experimentally. And that is why we created a mixer. We could study how the fluid behaves in the conditions of a mixer. Our mixer is just an example on how microfluidic components can be small enough to be modularly assembled in series or in parallel as an electronic component.</p></li>
                                    <p class="lead nomargin">Electronics</p>
+
                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/0/05/T--Madrid-OLM--Device--FinalPrototype--Micro--circuit1.png" style="width:35%;"/>
                                    <ol class="ourlist">
+
                                 <li><p class="lead"><b>Flow separation tests:</b> We have designed four experiments to study the behaviour of our flow under different circumstances. The flow circulates towards a triangle, a circle, a throat and the shape of a heart. This will show us how the flow behaves under certain circumstances. Its immediate consequences affect the design of chambers or any microchannel widening.</p></li>
                                        <li class="nomargin"><p class="lead">Custom modules oriented to experimentation.</p></li>
+
                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/6/64/T--Madrid-OLM--Device--FinalPrototype--Micro--circuit2.png" style="width:35%;"/>
                                        <li><p class="lead">Custom PCB created specifically for our device. </p></li>
+
                                <li><p class="lead"><b>Droplet generation tests:</b> Generating droplets is one of the milestones of microfluidics. Droplets are small volumes of sample moving as small drops in an arranged and harmonic way. It is much more than just beautiful. The main task of this chip is to study how a fluid and air pressure gradients can work together in the same room. The design pushes to the limit the available capabilities of our device.</p></li>
                                    </ol>
+
                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/7/7f/T--Madrid-OLM--Device--FinalPrototype--Micro--circuit3.png" style="width:35%;"/>
                                </li>
+
                                <li><p class="lead"><b>Tree and mixer test:</b> We have designed a large PMMA chip to work as a sample on how fluid behaves when flow is separated into different branches of a tree. The aim of this experiment is to study the laminar flow, and how it behaves when it arrived to the central chamber. On the exact opposite side, a negative relative pressure will be generated to study how it behaves in an alternative “negative relative pressure” tree. In this experiment there are two sides of a chip. Both of them are experimentally equivalent.  </p></li>
                                 <li>
+
                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/7/7f/T--Madrid-OLM--Device--FinalPrototype--Micro--circuit4.png" style="width:35%;"/>
                                    <p class="lead nomargin">Microfluidics and aptasensor</p>
+
                                <li><p class="lead"><b>A chip adapted to Dropsens GNP110 electrode:</b> We manufactured via regular CNC milling, adapted to micromachining, the housing for a Dropsens GNP110 electrode. A <a href="http://www.sciencedirect.com/science/article/pii/S0956566317304013?via%3Dihub">paper</a> proved our arrangement to be functional. We manufactured a two part chip. The upper side was micromilled with a 0.4 mm tool, with a custom made circuit for injecting the protein solution, ferricyanide and a buffer solution.We integrated the Dropsens electrode, looking forward to replicating the results obtained in the laboratory:</p></li>
                                    <ol class="ourlist">
+
                                        <li class="nomargin"><p class="lead">Affordable PDMS chip manufacturing.</p></li>
+
                                        <li class="nomargin"><p class="lead">Input/output and chambers of measurement normalised for a chip design oriented to manufacture.</p></li>
+
                                        <li><p class="lead">Immobilised aptamers on PDMS surface.</p></li>
+
                                    </ol>
+
                                </li>
+
 
                                  
 
                                  
                                 <li>
+
                                 <img alt="Image1" src="https://static.igem.org/mediawiki/2018/8/8f/T--Madrid-OLM--Device--FinalPrototype--Micro--circuit5.png" style="width:55%;"/>
                                    <p class="lead nomargin">System of measurement</p>
+
                                 <br/>
                                    <ol class="ourlist">
+
                                 <a class="btn btn--primary-2 btn--sm type--uppercase" href="https://2018.igem.org/Team:Madrid-OLM/ElectrodeIntegration">
                                        <li class="nomargin"><p class="lead">Optic system of measurement based on protein absorbance at 280 nm of wavelength.</p></li>
+
                                    <span class="btn__text">
                                        <li><p class="lead">LDR as light receiver.</p></li>
+
                                        Binding the aptamers to the electrode
                                    </ol>
+
                                    </span>
                                </li>
+
                                 </a>
                               
+
                                <li>
+
                                    <p class="lead nomargin">Pressure system</p>
+
                                    <ol class="ourlist">
+
                                        <li><p class="lead">Pressure pump regulated manually</p></li>
+
                                    </ol>
+
                                 </li>
+
                            </ol>
+
                            <p class="lead">From the point of view of the protein sample, the fluid would follow this stream: </p>
+
                            <ol class="ourlist">
+
                                 <li class="nomargin"><p class="lead">The protein sample starts inside the syringe, suspended in a buffer solution. And it is manually pumped into the PDMS chip.</p></li>
+
                                <li class="nomargin"><p class="lead">From the inlet, it is displaced to the sensor chamber, where the surface is almost covered by aptamers. </p></li>
+
                                <li class="nomargin"><p class="lead">The circulating proteins get trapped in the aptamers chamber.</p></li>
+
                                <li class="nomargin"><p class="lead">A clean buffer solution is injected to the chip, to wipe any other molecule out.</p></li>
+
                                <li class="nomargin"><p class="lead">A saline solution is pumped into the chip, to detach the protein from the aptamer. The process has been previously described in <a href="http://www.ncbi.nlm.nih.gov/pubmed/22736991"> this paper.</a></p></li>
+
                                <li class="nomargin"><p class="lead">The saline solution with the remaining protein is taken to another chamber, where absorbance is measured at the 280 nm wavelength.</p></li>
+
                                <li class="nomargin"><p class="lead">Once the measurement is taken, we get the information and analyze it. </p></li>
+
                                 <li class="nomargin"><p class="lead">The chip is cleaned and the process can start over again.</p></li>
+
 
                                  
 
                                  
 
                             </ol>
 
                             </ol>
Line 145: Line 154:
 
             </section>
 
             </section>
 
              
 
              
             <section id="further" class="text-center">
+
             <section id="plamabond" class="text-center">
 
                 <div class="container">
 
                 <div class="container">
 
                     <div class="row">
 
                     <div class="row">
 
                         <div class="col-md-10 col-lg-8 boxed boxed--border bg--secondary boxed--lg box-shadow">
 
                         <div class="col-md-10 col-lg-8 boxed boxed--border bg--secondary boxed--lg box-shadow">
                             <h2>Further details</h2>
+
                             <h2>Plasma bonding</h2>
                             <h5>The caset</h5>
+
                             <img alt="Image1" src="https://static.igem.org/mediawiki/2018/e/e3/T--Madrid-OLM--Device--FinalPrototype--Micro--plasma.gif" style="width:75%;"/>
                            <ol class="ourlist">
+
                            <p class="lead">After setting the microwave up for treating the chips with plasma, we got some results that might serve as an illustration of the process. Other documentation can be found <a href="http://arxiv.org/ftp/arxiv/papers/1807/1807.06784.pdf">here</a>. As we explain in the protocols section, we used a 700W microwave, modded to fit our requirements, as we explain in the protocols section:</p>
                                <li class="nomargin"><p class="lead">The caset is a two part PMMA structure, able to allow 4 fixed inputs (1 mm of diameter) and 4 fixed outputs (1 mm of diameter), 4 chambers for 280 nm UV LED modules and 4 chambers for LDR modules. An open module was designed for inserting other components if required by the user. Find more information on the modules in <a href="http://github.com/OpenLabMadrid/iGEM-Madrid-OLM/tree/master/Electronics/First%20prototype/Modules"> our GitHub.</a></p></li>
+
                            <a class="btn btn--primary-2 btn--sm type--uppercase" href="https://2018.igem.org/Team:Madrid-OLM/ProManufacturing#PlamsBn">
                                <li class="nomargin"><p class="lead">The control electronics was designed to govern 4 LED modules and 4 LDR modules.</p></li>
+
                                 <span class="btn__text">
                                <li class="nomargin"><p class="lead">It has a frame for the 40x40 mm PDMS chip, which relates to the bed of the laser cutter. PDMS chip should be 3 mm of thickness.</p></li>
+
                                    Plasma Bonding Protocol
                                <li><p class="lead">These parts are fixed together with screws and spacers. Although not a large pressure is required.</p></li>
+
                                 </span>
                            </ol>
+
                             </a>
                           
+
                             <br/><br/>
                            <h5>The chip design</h5>
+
                             <p class="lead">We finally configured the microwave to half of its power approximately, inserted a 100ml glass of water and 20 seconds of treatment. After these parameters were established, we got the following results.</p>
                            <ol class="ourlist">
+
                            <p class="lead">One of the indicators that show that plasma is treating the PDMS correctly is the modification of the surface tension of the water on a PDMS surface.</p>
                                <li class="nomargin"><p class="lead">The chip has dimensional restrictions (40 x 40 mm) due to the boundary condition of manufacturing: the laser cutter bed maximum dimensions.</p></li>
+
                            <img alt="Image1" src="https://static.igem.org/mediawiki/2018/f/f5/T--Madrid-OLM--Device--FinalPrototype--Micro--surfacetension.png" style="width:70%;"/>
                                <li class="nomargin"><p class="lead">We created <a href="http://github.com/OpenLabMadrid/iGEM-Madrid-OLM/tree/master/CAD/Polymerization%20chamber">polymerization chambers</a> for this purpose.</p></li>
+
 
                                 <li class="nomargin"><p class="lead">The input and output have been fixed for manufacturing concerns.</p></li>
+
                                <li class="nomargin"><p class="lead">The last chip that we designed has two parallel circuits. Therefore, two inputs and two outputs and four chambers (two per circuit).</p></li>
+
                                 <li><p class="lead">The chambers were conceived to be surrounded by an emitter and a receiver, facing one another.</p></li>
+
                             </ol>
+
                           
+
                             <h5>The electronics for an absorbance related measurement</h5>
+
                             <ol class="ourlist">
+
                                <li class="nomargin"><p class="lead">The electronics are governed by an Arduino Nano board. It links the analogue electronic board inside the device and the Arduino IDE. So the user can see the data related to the signal in the serial monitor. </p></li>
+
                                <li class="nomargin"><p class="lead">The light emitter is controlled by the Arduino through a 2N2222 transistor for providing the module with 6.5V and enough current. </p></li>
+
                                <li class="nomargin"><p class="lead">The circuit which receives the data related to the signal comes from the light receiver. When the protein sample contains a high concentration of protein, the voltage drops proportionally to the amount of protein. Then, the signal is amplified and corrected via an OpAmp and an Instrumental Amplifier.</p></li>
+
                                <li class="nomargin"><p class="lead">The voltage is measured by the built-in Arduino Analogue to digital converter.</p></li>
+
                                <li><p class="lead">Further information can be find in <a href="http://github.com/OpenLabMadrid/iGEM-Madrid-OLM/tree/master/Electronics/First%20prototype/PCB">our GitHub.</a></p></li>
+
                            </ol>
+
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
Line 182: Line 178:
 
             </section>
 
             </section>
 
              
 
              
           
+
             <section id="Injection" class="text-center">
             <section id="meresult" class="text-center">
+
 
                 <div class="container">
 
                 <div class="container">
 
                     <div class="row">
 
                     <div class="row">
 
                         <div class="col-md-10 col-lg-8 boxed boxed--border bg--secondary boxed--lg box-shadow">
 
                         <div class="col-md-10 col-lg-8 boxed boxed--border bg--secondary boxed--lg box-shadow">
                             <h2>Measurement results</h2>
+
                             <h2>Injection</h2>
                              
+
                             <img alt="Image1" src="https://static.igem.org/mediawiki/2018/2/23/T--Madrid-OLM--Device--FinalPrototype--Micro--pumpswork.png" style="width:75%;"/>
 +
                            <p class="lead">One of the improvements of the second prototype with respect to the initial is centered in the pressure system. It has the capability of displacing liquid volumes in the order of microliters. Our pressure pump has an unique arrangement, and it has been designed to be affordable and precise enough to govern the physical parameters involved in microfluidics mechanics.  </p> 
 +
                            <p class="lead">Further information can be found in <a href="http://github.com/OpenLabMadrid/iGEM-Madrid-OLM/tree/master/CAD/Pressure%20pump">our Github</a>. </p>
  
 
                         </div>
 
                         </div>
Line 198: Line 195:
 
              
 
              
 
              
 
              
             <section id="learned" class="text-center">
+
             <section id="improv" class="text-center">
 
                 <div class="container">
 
                 <div class="container">
 
                     <div class="row">
 
                     <div class="row">
 
                         <div class="col-md-10 col-lg-8 boxed boxed--border bg--secondary boxed--lg box-shadow">
 
                         <div class="col-md-10 col-lg-8 boxed boxed--border bg--secondary boxed--lg box-shadow">
                             <h2>Things we learned while doing</h2>
+
                             <h2>Further improvements</h2>
                             <ol class="ourlist">
+
                             <p class="lead">Although the microfluidic chip is quite similar to what we consider a final version, there are many situations that we want to warn about to anyone who wants to replicate our setup.</p>
                                <li class="nomargin"><p class="lead">The most important lesson we obtain was about the <b>system of measurement</b>. As we had no relevant results in this part, we proceed to change our approach, due to the following reasons:</p></li>
+
                            <p class="lead">Microfluidics does not always behave as we expect. DIY manufacturing is close to artisanry. Getting to a point in which replicability is expected is hard. It requires a lot of time and effort to master the technique. </p>
                                <p class="lead nomargin" style="margin-left:5%;">-  The sensor, at 280 nm, did not have a detection limit high enough for our necessities. It could not trace our concentrations.</p>
+
                            <p class="lead">PDMS has a very positive side for DIY manufacturers: it is affordable and resilient. It is easy to understand and a good way of learning microfluidics.</p>
                                <p class="lead nomargin" style="margin-left:5%;">-  Optical-based sensors are too sensitive to ambient conditions. So we should refuse to use it in our final design.</p>
+
                            <p class="lead">On the other hand, PMMA micromachining and precision manufacturing involve higher costs and a dependence to a mechanical workshop. You will not implement designs as fast as you can with the workflow that we have developed for PDMS, with the laser, the plasma bonding and the polymerization chamber.</p>
                                <p class="lead" style="margin-left:5%;">-  Optical-based sensors are too sensitive to metrologic precision parameters, as emitter-receiver alignment for instance. </p>
+
                            <p class="lead">We would love to share a project for anyone to replicate a microfluidics chip in the most affordable and optimal way. DIY tools are capricious and sometimes they do not behave as we expect them to do. </p>
                                <li class="nomargin"><p class="lead">The initial <b>PDMS chips</b> we made were very unstable. Troubleshooting leakages and integrating feasible input/output fittings require patience and creativity. We learnt the following: </p></li>
+
                            <p class="lead">By repairing and refining DIY tools, we have learn a lot of machine design, manufacturing and biodevices design. We consider that DIY is the best way of learning anything. This is the reason why we would love to share our spirit and encourage any interested person to overcome these difficulties and experience the satisfaction of designing, manufacturing and searching beyond the immediate reality.</p>
                                <p class="lead nomargin" style="margin-left:5%;">-  Our system should integrate a straightforward way of experimenting with microfluidics.</p>
+
                                <p class="lead" style="margin-left:5%;">-  We needed a smooth way of pumping microvolumes into the microfluidic system. PDMS is too sensitive to mechanical parameters, as pressure or input/output torques.</p>
+
                                <li><p class="lead"><b>Modular design</b> made our lives much easier.  Designing a chip, cutting it with the laser, curing the PDMS in the polymerization chamber and integrating the fittings was very easy, as we had developed an standard way of doing it.</p></li>
+
                                <li><p class="lead">It was not worth it <b>attaching aptamers to the PDMS surface</b>, as the range of detection of the sensor was too far from tracing our concentrations.</p></li>
+
                                <li><p class="lead"><b>DIY</b> was the way to go, as we could not spend time and money in buying commercial equipment and learning how to use it. /p></li>
+
                            </ol>
+
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
Line 220: Line 211:
 
                 </div>
 
                 </div>
 
                 <!--end of container-->
 
                 <!--end of container-->
             </section>
+
             </section>          
 
+
 
+
 
+
 
         </div>
 
         </div>
 
         <!--<div class="loader"></div>-->
 
         <!--<div class="loader"></div>-->

Latest revision as of 01:47, 18 October 2018

Madrid-OLM

Microfluidics part of the device

Microfluidics

When the need of moving microvolumes arises as a mandatory requirement of design, microfluidics pops up as the one and only solution. Although there is at hand a wide range of microfluidic commercial solutions, many of them are too expensive to start experimenting with.

That is why our method comes to give an alternative solution. The PDMS manufacturing reveals itself as a tough rival with respect to other alternatives. Although there is at hand a wide range of microfluidic commercial solutions, many of them are too expensive to start experimenting with.

The lab workflow for PDMS chips

Image1
1-Molding of the upper half
  1. Negative:a laser cuts the tape that is adhered to an acetate. The remaining tape is removed carefully. The channels and the chambers, as well as the input and the output have been cutted and the negative has been created. More info about the protocols involved here.

  2. Image1
  3. Molding box: (Find the polymerization chamber in our github). Once the negative has been created, it is time to align the acetate with the marks in the polymerization chamber. Depending on the chosen configuration, it might be worth to place the perforated base on the bottom of the acetate.

  4. PDMS casting: PDMS casting was made inside an lab oven most of times. Curing time depended on the drying method selected. More info about the protocols involved here.

  5. Image1
2-Molding of the lower half

The process is repeated without the negative part of the mold.

3-Fixing the two halves

the selected method for fixing both halves was plasma bonding. More info about the protocols involved here.

4-Creating the input and the outputs

We usually used to hole punch the PDMS inlet/outlet with a needle. But we cured the PDMS with a needle inside as another negative volume for molding.More info about the protocols involved here.

5-Injecting fluids into the chip

Automatic controlled microvolume pressure pumps have been developed specifically for our microfluidic chips. Specific plans of the pumps design can be found in our github.

Manufacturing the PMMA chips

Although we are proud of having implemented an affordable workflow for developing functional PDMS chips, we manufactured PMMA chips with micromachining techniques.

Our University has a mechanical workshop that usually machines vacuum chambers, or metallic parts of machines, bending aluminum sheets, etc. We visited the workshop and asked the workers how to micromachine a PMMA chip with almost 0.2 mm height and 0.8 channel width. We purchased a 0.4 mm tip diameter and adapted the manufacturing to other available tools.

The input and output needed to be modified, and we used 21G needles (0.8 mm) as inlet and outlet. The fitting was made with High Performance Liquid Chromatography (HPLC) 0.8 mm tubes. They fitted tight enough to avoid leaks.

Fluid Mechanics behaviour inside the chip

Once the workflow was designed and implemented, we focused on designing microfluidic concepts that could prove our system right. In this regard, there were some Fluid Mechanics concepts that we wanted to experiment with. This is why we created the following experiments:

  1. Our mixer: Inside the chip, the fluid behaves in a laminar way. There are many papers on this topic.We wanted to test this experimentally. And that is why we created a mixer. We could study how the fluid behaves in the conditions of a mixer. Our mixer is just an example on how microfluidic components can be small enough to be modularly assembled in series or in parallel as an electronic component.

  2. Image1
  3. Flow separation tests: We have designed four experiments to study the behaviour of our flow under different circumstances. The flow circulates towards a triangle, a circle, a throat and the shape of a heart. This will show us how the flow behaves under certain circumstances. Its immediate consequences affect the design of chambers or any microchannel widening.

  4. Image1
  5. Droplet generation tests: Generating droplets is one of the milestones of microfluidics. Droplets are small volumes of sample moving as small drops in an arranged and harmonic way. It is much more than just beautiful. The main task of this chip is to study how a fluid and air pressure gradients can work together in the same room. The design pushes to the limit the available capabilities of our device.

  6. Image1
  7. Tree and mixer test: We have designed a large PMMA chip to work as a sample on how fluid behaves when flow is separated into different branches of a tree. The aim of this experiment is to study the laminar flow, and how it behaves when it arrived to the central chamber. On the exact opposite side, a negative relative pressure will be generated to study how it behaves in an alternative “negative relative pressure” tree. In this experiment there are two sides of a chip. Both of them are experimentally equivalent.

  8. Image1
  9. A chip adapted to Dropsens GNP110 electrode: We manufactured via regular CNC milling, adapted to micromachining, the housing for a Dropsens GNP110 electrode. A paper proved our arrangement to be functional. We manufactured a two part chip. The upper side was micromilled with a 0.4 mm tool, with a custom made circuit for injecting the protein solution, ferricyanide and a buffer solution.We integrated the Dropsens electrode, looking forward to replicating the results obtained in the laboratory:

  10. Image1
    Binding the aptamers to the electrode

Plasma bonding

Image1

After setting the microwave up for treating the chips with plasma, we got some results that might serve as an illustration of the process. Other documentation can be found here. As we explain in the protocols section, we used a 700W microwave, modded to fit our requirements, as we explain in the protocols section:

Plasma Bonding Protocol

We finally configured the microwave to half of its power approximately, inserted a 100ml glass of water and 20 seconds of treatment. After these parameters were established, we got the following results.

One of the indicators that show that plasma is treating the PDMS correctly is the modification of the surface tension of the water on a PDMS surface.

Image1

Injection

Image1

One of the improvements of the second prototype with respect to the initial is centered in the pressure system. It has the capability of displacing liquid volumes in the order of microliters. Our pressure pump has an unique arrangement, and it has been designed to be affordable and precise enough to govern the physical parameters involved in microfluidics mechanics.

Further information can be found in our Github.

Further improvements

Although the microfluidic chip is quite similar to what we consider a final version, there are many situations that we want to warn about to anyone who wants to replicate our setup.

Microfluidics does not always behave as we expect. DIY manufacturing is close to artisanry. Getting to a point in which replicability is expected is hard. It requires a lot of time and effort to master the technique.

PDMS has a very positive side for DIY manufacturers: it is affordable and resilient. It is easy to understand and a good way of learning microfluidics.

On the other hand, PMMA micromachining and precision manufacturing involve higher costs and a dependence to a mechanical workshop. You will not implement designs as fast as you can with the workflow that we have developed for PDMS, with the laser, the plasma bonding and the polymerization chamber.

We would love to share a project for anyone to replicate a microfluidics chip in the most affordable and optimal way. DIY tools are capricious and sometimes they do not behave as we expect them to do.

By repairing and refining DIY tools, we have learn a lot of machine design, manufacturing and biodevices design. We consider that DIY is the best way of learning anything. This is the reason why we would love to share our spirit and encourage any interested person to overcome these difficulties and experience the satisfaction of designing, manufacturing and searching beyond the immediate reality.