Difference between revisions of "Team:NEFU China/Coding book"

(Created page with "<html lang="en"> <head> <meta charset="utf-8"> <title>Background</title> <link href="https://2018.igem.org/wiki/index.php?title=Template:NEFU_China/CSS-menu&action=raw&ctype=...")
 
 
(35 intermediate revisions by 7 users not shown)
Line 3: Line 3:
 
<meta charset="utf-8">
 
<meta charset="utf-8">
  
<title>Background</title>
+
<title>Code Book</title>
  
 
<link href="https://2018.igem.org/wiki/index.php?title=Template:NEFU_China/CSS-menu&action=raw&ctype=text/css"  rel="stylesheet" type="text/css">
 
<link href="https://2018.igem.org/wiki/index.php?title=Template:NEFU_China/CSS-menu&action=raw&ctype=text/css"  rel="stylesheet" type="text/css">
Line 10: Line 10:
 
<link href="https://2018.igem.org/wiki/index.php?title=Template:NEFU_China/CSS-background-layer-bottom&action=raw&ctype=text/css" rel="stylesheet" type="text/css">
 
<link href="https://2018.igem.org/wiki/index.php?title=Template:NEFU_China/CSS-background-layer-bottom&action=raw&ctype=text/css" rel="stylesheet" type="text/css">
 
<link href="https://2018.igem.org/wiki/index.php?title=Template:NEFU_China/CSS-background-banner&action=raw&ctype=text/css" rel="stylesheet" type="text/css">
 
<link href="https://2018.igem.org/wiki/index.php?title=Template:NEFU_China/CSS-background-banner&action=raw&ctype=text/css" rel="stylesheet" type="text/css">
<link href="https://2018.igem.org/wiki/index.php?title=Template:NEFU_China/CSS-background-foot&action=raw&ctype=text/css" rel="stylesheet" type="text/css">
 
 
<style>
 
<style>
  
Line 22: Line 21:
 
     margin-top: 0px;
 
     margin-top: 0px;
 
     margin-left: 0px;
 
     margin-left: 0px;
 +
}
 +
#menu li ul li:hover ul{
 +
    background:rgba(0,0,0,0.75)!important;
 +
}
 +
li#mainlevel_01 a {
 +
    color: #FFE5B5!important;
 +
 +
}
 +
li#mainlevel_01 a:hover {
 +
    font-size:30px!important;
 +
    text-shadow:0px 0px 8px #FFE5B5,
 +
                0px 0px 42px #FFE5B5,
 +
                0px 0px 72px #FFE5B5,
 +
                0px 0px 150px #FFE5B5;
 +
}
 +
li#mainlevel_02 a {
 +
    color: #FFE5B5!important;
 +
}
 +
li#mainlevel_02 a:hover {
 +
    font-size:30px!important;
 +
    text-shadow:0px 0px 8px #FFE5B5,
 +
                0px 0px 42px #FFE5B5,
 +
                0px 0px 72px #FFE5B5,
 +
                0px 0px 150px #FFE5B5;
 +
}
 +
li#mainlevel_03 a {
 +
    color: #FFE5B5!important;
 +
}
 +
li#mainlevel_03 a:hover {
 +
    font-size:30px!important;
 +
    text-shadow:0px 0px 8px #FFE5B5,
 +
                0px 0px 42px #FFE5B5,
 +
                0px 0px 72px #FFE5B5,
 +
                0px 0px 150px #FFE5B5;
 +
}
 +
li#mainlevel_05 a {
 +
    color: #FFE5B5!important;
 +
}
 +
li#mainlevel_05 a:hover {
 +
    font-size:30px!important;
 +
    text-shadow:0px 0px 8px #FFE5B5,
 +
                0px 0px 42px #FFE5B5,
 +
                0px 0px 72px #FFE5B5,
 +
                0px 0px 150px #FFE5B5;
 +
}
 +
li#mainlevel_06 a {
 +
    color: #FFE5B5!important;
 +
}
 +
li#mainlevel_06 a:hover {
 +
    font-size:30px!important;
 +
    text-shadow:0px 0px 8px #FFE5B5,
 +
                0px 0px 42px #FFE5B5,
 +
                0px 0px 72px #FFE5B5,
 +
                0px 0px 150px #FFE5B5;
 +
}
 +
li#mainlevel_07 a {
 +
    color: #FFE5B5!important;
 +
}
 +
li#mainlevel_07 a:hover {
 +
    font-size:30px!important;
 +
    text-shadow:0px 0px 8px #FFE5B5,
 +
                0px 0px 42px #FFE5B5,
 +
                0px 0px 72px #FFE5B5,
 +
                0px 0px 150px #FFE5B5;
 +
}
 +
li#mainlevel_08 a {
 +
    color: #FFE5B5!important;
 +
}
 +
li#mainlevel_08 a:hover {
 +
    font-size:30px!important;
 +
    text-shadow:0px 0px 8px #FFE5B5,
 +
                0px 0px 42px #FFE5B5,
 +
                0px 0px 72px #FFE5B5,
 +
                0px 0px 150px #FFE5B5;
 +
}
 +
#menu li ul li ul li a:hover {
 +
    color: rgba(0,223,252,1);
 +
    border-top: dotted 1px rgba(255,255,255,0.91);
 +
    border-bottom: dotted 1px rgba(255,255,255,0.91);
 +
    background: rgba(0,223,252,.02);
 +
}
 +
#nav .mainlevel a {
 +
    color: black;
 +
    text-decoration:none;
 +
    line-height:32px;
 +
    display:block;
 +
    padding:0 5px;
 +
    font-size: 25px!important;
 +
font-family: 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji' !important;
 +
}
 +
.layer-bottom {
 +
z-index: -2;
 +
position: absolute;
 +
margin-top: 36px!important;
 
}
 
}
  
Line 29: Line 122:
 
<body>
 
<body>
 
<!--menu-->
 
<!--menu-->
<div id="menu">
+
 
<li id="nav">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
+
<div id="menu" style="background-color:rgba(0,0,0,1.0)!important">
<a class="menu1" href="#" style="text-align: right;">☰</a>
+
<li id="nav" style="left: 8%!important; width: 100%!important;">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
 +
 
<ul class="firstmenu" style="float: left">
 
<ul class="firstmenu" style="float: left">
 
 
Line 42: Line 136:
 
<ul id="sub_02">
 
<ul id="sub_02">
 
<li><a href="https://2018.igem.org/Team:NEFU_China/Background" target="_self">BACKGROUND</a></li>
 
<li><a href="https://2018.igem.org/Team:NEFU_China/Background" target="_self">BACKGROUND</a></li>
<li><a href="https://2018.igem.org/Team:NEFU_China/Description" target="_self">DESCRIPTION</a></li>
+
<li><a href="https://2018.igem.org/Team:NEFU_China/Description" target="_self">DESCRIPTION &amp; DESIGN</a></li>
<li><a href="https://2018.igem.org/Team:NEFU_China/Design" target="_self">DESIGN</a></li>
+
<li><a href="https://2018.igem.org/Team:NEFU_China/Coding book" target="_self">CODE BOOK</a></li>
<li><a href="https://2018.igem.org/Team:NEFU_China/Coding book" target="_self">CODING BOOK</a></li>
+
 
  </ul>
 
  </ul>
 
  </li>
 
  </li>
  <li class="mainlevel" id="mainlevel_03">
+
<li class="mainlevel" id="mainlevel_03">
  <a href="https://2018.igem.org/Team:NEFU_China/Basic parts"><img id="parts" src="https://static.igem.org/mediawiki/2018/5/58/T--NEFU_China--_PARTS.png">PARTS</a>
+
  <a href="https://2018.igem.org/Team:NEFU_China/Demonstrate"><img id="parts" src="https://static.igem.org/mediawiki/2018/6/62/T--NEFU_China--_RESULTS.png">EXPERIMENTS</a>
 
  <ul id="sub_03">
 
  <ul id="sub_03">
  <li><a href="https://2018.igem.org/Team:NEFU_China/Basic parts" target="_self">BASIC PARTS</a></li>
+
  <li><a href="https://2018.igem.org/Team:NEFU_China/Lock_Key" target="_self">LOCK &amp; KEY</a></li>
  <li><a href="https://2018.igem.org/Team:NEFU_China/Composite parts" target="_self">COMPOSITE PARTS</a></li>
+
  <li><a href="https://2018.igem.org/Team:NEFU_China/Suicide" target="_self">INFORMATION DESTRUCTION</a></li>
 +
  <li><a href="https://2018.igem.org/Team:NEFU_China/Splicing" target="_self">Pre-RNA SPLICING</a></li>
 +
  <li><a href="https://2018.igem.org/Team:NEFU_China/Demonstrate" target="_self">DEMONSTRATE</a></li>
 +
  <hr>
 +
  <li><a href="https://2018.igem.org/Team:NEFU_China/Basic_Part" target="_self">BASIC PARTS</a></li>
 +
  <li><a href="https://2018.igem.org/Team:NEFU_China/Composite_Part" target="_self">COMPOSITE PARTS</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Improve" target="_self">IMPROVEMENT PARTS</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Improve" target="_self">IMPROVEMENT PARTS</a></li>
  <li><a href="https://2018.igem.org/Team:NEFU_China/Parts collection" target="_self">PARTS COLLECTION</a></li>
+
  <li><a href="https://2018.igem.org/Team:NEFU_China/Part_Collection" target="_self">PARTS COLLECTION</a></li>
  </ul>
+
  <hr>
  </li>
+
  <li><a href="https://2018.igem.org/Team:NEFU_China/Notebook" target="_self">NOTEBOOK</a></li>
      <li class="mainlevel" id="mainlevel_04">
+
  <li><a href="https://2018.igem.org/Team:NEFU_China/Protocol" target="_self">PROTOCOL</a></li>
  <a href="https://2018.igem.org/Team:NEFU_China/Lock_Key"><img id="results" src="https://static.igem.org/mediawiki/2018/6/62/T--NEFU_China--_RESULTS.png">RESULTS</a>
+
  <ul id="sub_04">
+
  <li><a href="https://2018.igem.org/Team:NEFU_China/Lock_Key" target="_self">LOCK &amp; KEY</a></li>
+
  <li><a href="https://2018.igem.org/Team:NEFU_China/Suicide" target="_self">SUICIDE</a></li>
+
  <li><a href="https://2018.igem.org/Team:NEFU_China/Splicing" target="_self">SPLICING</a></li>
+
 
  </ul>
 
  </ul>
 
  </li>
 
  </li>
 +
 
 
  <li class="mainlevel" id="mainlevel_05">
 
  <li class="mainlevel" id="mainlevel_05">
 
  <a href="https://2018.igem.org/Team:NEFU_China/Model"><img id="model" src="https://static.igem.org/mediawiki/2018/0/0c/T--NEFU_China--_MODEL.png">MODEL</a>
 
  <a href="https://2018.igem.org/Team:NEFU_China/Model"><img id="model" src="https://static.igem.org/mediawiki/2018/0/0c/T--NEFU_China--_MODEL.png">MODEL</a>
 
  <ul id="sub_05">
 
  <ul id="sub_05">
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Model" target="_self">OVERVIEW</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Model" target="_self">OVERVIEW</a></li>
  <li><a href="https://2018.igem.org/Team:NEFU_China/Model1" target="_self">MODEL1</a></li>
+
  <li><a href="https://2018.igem.org/Team:NEFU_China/Model1" target="_self">CORRESPONDING COEFFICIENT</a></li>
  <li><a href="https://2018.igem.org/Team:NEFU_China/Model2" target="_self">MODEL2</a></li>
+
  <li><a href="https://2018.igem.org/Team:NEFU_China/Model2" target="_self">KILLING MODEL</a></li>
 
  </ul>
 
  </ul>
 
  </li>
 
  </li>
Line 76: Line 170:
 
  <ul id="sub_06">
 
  <ul id="sub_06">
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Software" target="_self">OVERVIEW</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Software" target="_self">OVERVIEW</a></li>
  <li><a href="https://2018.igem.org/Team:NEFU_China/Software1" target="_self">SOFTWARE1</a></li>
+
  <li><a href="https://2018.igem.org/Team:NEFU_China/Software1" target="_self">CODING</a></li>
  <li><a href="https://2018.igem.org/Team:NEFU_China/Software2" target="_self">SOFTWARE2</a></li>
+
  <li><a href="https://2018.igem.org/Team:NEFU_China/Software2" target="_self">MISLEADING</a></li>
 +
  <li><a href="https://2018.igem.org/Team:NEFU_China/Software3" target="_self">WORDSEGMENT</a></li>
 
  </ul>
 
  </ul>
 
  </li>
 
  </li>
Line 85: Line 180:
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Attributions" target="_self">ATTRIBUTIONS</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Attributions" target="_self">ATTRIBUTIONS</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Members" target="_self">MEMBERS</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Members" target="_self">MEMBERS</a></li>
  <li><a href="https://2018.igem.org/Team:NEFU_China/Sponsoring" target="_self">SPONSORING</a></li>
 
 
  </ul>
 
  </ul>
 
  </li>
 
  </li>
Line 91: Line 185:
 
  <a href="https://2018.igem.org/Team:NEFU_China/Human_Practices"><img id="humanpractice" src="https://static.igem.org/mediawiki/2018/9/91/T--NEFU_China--_HUMANPRACTICE.png">HUMAN PRACTICE</a>
 
  <a href="https://2018.igem.org/Team:NEFU_China/Human_Practices"><img id="humanpractice" src="https://static.igem.org/mediawiki/2018/9/91/T--NEFU_China--_HUMANPRACTICE.png">HUMAN PRACTICE</a>
 
  <ul id="sub_08">
 
  <ul id="sub_08">
 +
  <li><a href="https://2018.igem.org/Team:NEFU_China/Human_Practices" target="_self">OVERVIEW</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Gold_integrated" target="_self">GOLD INTEGRATED</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Gold_integrated" target="_self">GOLD INTEGRATED</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Silver" target="_self">SILVER</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Silver" target="_self">SILVER</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Collaborations" target="_self">COLLABORTION</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Collaborations" target="_self">COLLABORTION</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Public_Engagement" target="_self">EDUCATION &amp; PUBLIC ENGAGEMENT</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Public_Engagement" target="_self">EDUCATION &amp; PUBLIC ENGAGEMENT</a></li>
  </ul>
 
  </li>
 
  <li class="mainlevel" id="mainlevel_09">
 
  <a href="https://2018.igem.org/Team:NEFU_China/Notebook"><img id="notebook" src="https://static.igem.org/mediawiki/2018/c/cb/T--NEFU_China--_NOTEBOOK.png">NOTEBOOK</a>
 
  <ul id="sub_09">
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Notebook" target="_self">OVERVIRW</a></li>
 
  <li><a href="https://2018.igem.org/Team:NEFU_China/Protocol" target="_self">PROTOCOL</a></li>
 
 
  </ul>
 
  </ul>
 
  </li>
 
  </li>
Line 109: Line 197:
 
</div>
 
</div>
 
<div id="banner">  
 
<div id="banner">  
<img src="https://static.igem.org/mediawiki/2018/0/05/T--NEFU_China--DNA.png" alt="banner" id="banner-img">
+
<img src="https://static.igem.org/mediawiki/2018/c/c0/T--NEFU_China--coddebook.png" alt="banner" id="banner-img">
 
</div>
 
</div>
 +
<div class="layer-bottom">
 +
 +
<canvas id="canvas" style="background:#000000"></canvas>
 +
 +
<script type="text/javascript">
 +
 +
window.onload = function(){
 +
var canvas = document.getElementById("canvas");
 +
var context =canvas.getContext("2d");
 +
var W = window.innerWidth;
 +
                        var H = 7400;
 +
//var H = window.innerHeight*1.5;
 +
canvas.width = W;
 +
canvas.height = H;
 +
var fontSize = 20;
 +
var colunms = Math.floor(W /fontSize);
 +
var drops = [];
 +
for(var i=0;i<colunms;i++){
 +
drops.push(0);
 +
}
 +
 +
 +
var str1 = "ATCG";
 +
                        var str2 = "01";
 +
function draw(){
 +
context.fillStyle = "rgba(0,0,0,0.2)";
 +
context.fillRect(0,0,W,H);
 +
context.font = "700 "+fontSize+"px  微软雅黑";
 +
context.fillStyle = "#003544";
 +
for(var i=0;i<colunms/2;i++){
 +
var index = Math.floor(Math.random() * str1.length);
 +
var x = i*fontSize;
 +
var y = drops[i] *fontSize;
 +
context.fillText(str1[index],x,y);
 +
if(y >= canvas.height){
 +
drops[i] = 0;
 +
}
 +
                                        if(Math.random() > 0.99){
 +
                                                drops[i] = 0;
 +
}
 +
drops[i]++;
 +
}
 +
                                for(var i=colunms/2;i<colunms;i++){
 +
var index = Math.floor(Math.random() * str2.length);
 +
var x = i*fontSize;
 +
var y = drops[i] *fontSize;
 +
context.fillText(str2[index],x,y);
 +
if(y >= canvas.height){
 +
drops[i] = 0;
 +
}
 +
                                        if(Math.random() > 0.99){
 +
                                                drops[i] = 0;
 +
}
 +
drops[i]++;
 +
}
 +
};
 +
 +
function randColor(){
 +
var r = Math.floor(Math.random() * 256);
 +
var g = Math.floor(Math.random() * 256);
 +
var b = Math.floor(Math.random() * 256);
 +
return "rgb("+r+","+g+","+b+")";
 +
}
 +
 +
draw();
 +
setInterval(draw,60);
 +
};
 +
 +
</script>
 +
 +
           
 +
 +
</div>
 +
 
<div id="background-content">
 
<div id="background-content">
<h1>Background</h1>
+
<h1 style="font-size: 65px;color: orange!important;height: 84px;padding-top: 11px;">Code Book</h1>
 
     <p>
 
     <p>
So far, the national trends in costs for wages, salaries, and benefits have glossed over these concerns. The growth in labor costs continued to slow in the second quarter - a pattern that held true in all major regions. However, the slowdown in labor costs is due solely to sharp cutbacks in what companies, mainly large corporations, are paying for benefits, which make up about a fourth of total compensation costs nationally. Because of slower growth in health care costs, workers' compensation, and state unemployment insurance, benefits grew only 2.6% during the past year, the lowest pace on record.<br>
+
In English text, each letter has a certain frequency. We constructed a list of letter frequencies for each letter. Also, in living organisms, each codon is used with a certain frequency. Based on this relationship between English letters and codons, we find out the correspondence between letters and codons by using DFS (Depth First Search) algorithm and optimization arithmetic.<br>
        But since few have marked down their own prices in line with the metal's fall, they will be able to recoup much of the difference. Not so the producers, whose income is directly related to the fluctuating daily price on the London Metal Exchange.<br>
+
        The Japanese have their electronics, the Germans their engineering. But when it comes to command of global markets, the U.S. owns the service sector.<br>
+
        Meanwhile, pressure has been growing from the car companies. GM ships about 60% of its cars and trucks with Ryder, while Chrysler ships some 40%.<br>
+
        First of all, current modest demand growth will not support any more increases that large. Second, now that manufacturers have worked to get their inventories lower, they will be cautious about adding goods in coming months.<br>
+
These are two steps:
+
 
</p>
 
</p>
<ol>
+
<br>
<li>
+
So far, the national trends in costs for wages, salaries, and benefits have glossed over these concerns. The growth in labor costs continued to slow in the second quarter - a pattern that held true in all major regions. However, the slowdown in labor costs is due solely to sharp cutbacks in what companies, mainly large corporations, are paying for benefits, which make up about a fourth of total compensation costs nationally. Because of slower growth in health care costs, workers' compensation, and state unemployment insurance, benefits grew only 2.6% during the past year, the lowest pace on record.
+
<hr>
</li>
+
<li>
+
<br>
So far, the national trends in costs for wages, salaries, and benefits have glossed over these concerns. The growth in labor costs continued to slow in the second quarter - a pattern that held true in all major regions. However, the slowdown in labor costs is due solely to sharp cutbacks in what companies, mainly large corporations, are paying for benefits, which make up about a fourth of total compensation costs nationally. Because of slower growth in health care costs, workers' compensation, and state unemployment insurance, benefits grew only 2.6% during the past year, the lowest pace on record.
+
<h1 style="font-size: 45px;color: orange!important;line-height: 40px;">Create a letter-frequency table and a codon-frequency table</h1>
</li>
+
</ol>
+
 
<p>
 
<p>
The Japanese have their electronics, the Germans their engineering. But when it comes to command of global markets, the U.S. owns the service sector.<br>
+
According to the literature, we obtain the information of the frequency of letters and codons.
 +
<br>
 +
letter frequency table:<br>
 +
<img src="https://static.igem.org/mediawiki/2018/9/9c/T--NEFU_China--letter-freq.png" style="width:900px;"><br>
 +
codon frequency table:<br>
 +
<img src="https://static.igem.org/mediawiki/2018/d/d6/T--NEFU_China--codon-freq.png" style="width:900px;"><br>
 +
   
 
</p>
 
</p>
<img src="https://static.igem.org/mediawiki/2018/5/58/T--NEFU_China--Figure_1.png" alt="Figure1" id="Figure1-img">
+
<h2 id="Figure1-title">Figure 1: This is Figure 1.</h2>
+
<br>
 +
<br>
 +
<hr>
 +
 +
<br>
 +
<h1 style="font-size: 45px;color: orange!important;line-height: 40px;">Find out the correspondence between letters and codons by using DFS Algorithm</h1>
 
<p>
 
<p>
So far, the national trends in costs for wages, salaries, and benefits have glossed over these concerns. The growth in labor costs continued to slow in the second quarter - a pattern that held true in all major regions. However, the slowdown in labor costs is due solely to sharp cutbacks in what companies, mainly large corporations, are paying for benefits, which make up about a fourth of total compensation costs nationally. Because of slower growth in health care costs, workers' compensation, and state unemployment insurance, benefits grew only 2.6% during the past year, the lowest pace on record.<br>
+
We build up a tree structure where the codons and the frequency of the codons are stored on each node. Then we use the depth-first search algorithm to traverse down from the root node successively, and match condon-frequence with the letter- frequency to obtain the correspondence between letters and codons.<br>
 +
        The tree structure is shown as bellow.<br>
 +
<br>
 +
<div align="center">
 +
<img src="https://static.igem.org/mediawiki/2018/5/57/T--NEFU_China--s1-tree.png" style="width:600px;"></div><br>
 +
 +
 
</p>
 
</p>
 
<br>
 
<br>
Line 141: Line 313:
 
 
 
<br>
 
<br>
<h1>Background first title</h1>
+
<h1 style="font-size: 45px;color: orange!important;line-height: 40px;">Get the optimal solution by using optional algorithm.</h1>
 
<p>
 
<p>
So far, the national trends in costs for wages, salaries, and benefits have glossed over these concerns. The growth in labor costs continued to slow in the second quarter - a pattern that held true in all major regions. However, the slowdown in labor costs is due solely to sharp cutbacks in what companies, mainly large corporations, are paying for benefits, which make up about a fourth of total compensation costs nationally. Because of slower growth in health care costs, workers' compensation, and state unemployment insurance, benefits grew only 2.6% during the past year, the lowest pace on record.<br>
+
In step 2, we get the correspondence between letters and codons. But some letters have multiple corresponding relationships. For example, in figure 1, the letters E and T correspond to codons GAU, GCU, GAA, E and T also correspond to codons GAU, GCU, AUG. What’s more, the letter T can also correspond to codons GAU, GCU, GCA. Therefore, we use the optimal algorithm to determine one of the multiple correspondence. <br>  
 
<br>
 
<br>
 +
For example (letter T):<br>
 +
<br>
 +
<div align="center">
 +
<img src="https://static.igem.org/mediawiki/2018/8/8f/T--NEFU_China--s1-analys.png" style="width:600px;"></div><br>
 +
 
</p>
 
</p>
<table id="table1">
+
<br>
<td valign="top">
+
<hr>
<p>
+
So far, the national trends in costs for wages, salaries, and benefits have glossed over these concerns. The growth in labor costs continued to slow in the second quarter - a pattern that held true in all major regions. However, the slowdown in labor costs is due solely to sharp cutbacks in what companies, mainly large corporations, are paying for benefits, which make up about a fourth of total compensation costs nationally. Because of slower growth in health care costs, workers' compensation, and state unemployment insurance, benefits grew only 2.6% during the past year, the lowest pace on record.<br>
+
<br>
So far, the national trends in costs for wages, salaries, and benefits have glossed over these concerns. The growth in labor costs continued to slow in the second quarter - a pattern that held true in all major regions. However, the slowdown in labor costs is due solely to sharp cutbacks in what companies, mainly large corporations, are paying for benefits, which make up about a fourth of total compensation costs nationally. Because of slower growth in health care costs, workers' compensation, and state unemployment insurance, benefits grew only 2.6% during the past year, the lowest pace on record.<br>
+
<h1 style="font-size: 65px;color: orange!important;">RESULTS</h1>
</p>
+
</td>
+
<td valign="top">
+
<img src="https://static.igem.org/mediawiki/2018/2/2f/T--NEFU_China--Figure_2.png" alt="Figure2" id="Figure2-img">
+
<h2 id="Figure2-title">Figure 2: This is Figure 2.</h2>
+
</td>
+
</table>
+
 
<p>
 
<p>
The Japanese have their electronics, the Germans their engineering. But when it comes to command of global markets, the U.S. owns the service sector.<br>
+
</p>
+
Print the correspondence between letters and codons:
<br><br><br>
+
</div>
+
<div id="background-reference">
+
<h1>Reference</h1>
+
<p> <a href="#"> [1] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. <em><em>Nat Chem Biol 13</em></em> , 432-438 </a>
+
 
<br>
 
<br>
<a href="#"> [2] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. <em><em>Nat Chem Biol 13</em></em> , 432-438 </a>
+
 
<br>
 
<br>
<a href="#"> [3] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. <em><em>Nat Chem Biol 13</em></em> , 432-438 </a>
+
<div align="center">
<br>
+
    <img src="https://static.igem.org/mediawiki/2018/2/25/T--NEFU_China--codebook_table.png"></div>
<a href="#"> [4] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. <em><em>Nat Chem Biol 13</em></em> , 432-438 </a>
+
 
<br>
+
<a href="#"> [5] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. <em><em>Nat Chem Biol 13</em></em> , 432-438 </a>
+
<br>
+
<a href="#"> [6] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. <em><em>Nat Chem Biol 13</em></em> , 432-438 </a>s
+
 
</p>
 
</p>
<br><br><br>
+
</div>
+
<br>
<div class="background-foot">
+
<div id="foot-title">
+
<table frame="void">
+
<tr>
+
<td>
+
<h1>Userfull links</h1>
+
<h2>
+
<a href="https://2018.igem.org/Team:NEFU_China/NEFU_China">Home</a>
+
&nbsp;&nbsp;&nbsp;&nbsp;
+
<a href="https://2018.igem.org/Team:NEFU_China/MODEL/Overview">Model</a>
+
&nbsp;&nbsp;&nbsp;
+
<a href="https://2018.igem.org/Team:NEFU_China/PROJECT/Description">Project</a>
+
    &nbsp;&nbsp;
+
    <a href="https://2018.igem.org/Team:NEFU_China/SOFTWARE/Overview">Software</a>
+
</h2>
+
+
<h2>
+
<a href="https://2018.igem.org/Team:NEFU_China/PARTS/Basic parts">Parts</a>
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
+
<a href="https://2018.igem.org/Team:NEFU_China/TEAM/Members">Teams</a>
+
&nbsp;&nbsp;
+
<a href="https://2018.igem.org/Team:NEFU_China/RESULTS/Leaders">Results</a>
+
&nbsp;
+
<a href="https://2018.igem.org/Team:NEFU_China/NOTEBOOK/Overview">Notebook</a>
+
</h2>
+
+
<h2>
+
<a href="https://2018.igem.org/Team:NEFU_China/HUMAN PRACTICE/Gold_integrated">Human &nbsp;Practice</a>
+
</h2>
+
</td>
+
<td style="padding-left: 70px!important;">
+
<h1>Follow us</h1>
+
<img alt="facebook" src="https://static.igem.org/mediawiki/2018/b/b5/T--NEFU_China--facebook.png">
+
&nbsp;&nbsp;&nbsp;
+
        <img alt="twitter" src="https://static.igem.org/mediawiki/2018/3/36/T--NEFU_China--twitter.png">
+
&nbsp;&nbsp;&nbsp;
+
<img alt="wehchat" src="https://static.igem.org/mediawiki/2018/c/ca/T--NEFU_China--wechat.png">
+
        <br>
+
        <img alt="facebook" src="https://static.igem.org/mediawiki/2018/b/b5/T--NEFU_China--facebook.png">
+
&nbsp;&nbsp;&nbsp;
+
        <img alt="twitter" src="https://static.igem.org/mediawiki/2018/3/36/T--NEFU_China--twitter.png">
+
&nbsp;&nbsp;&nbsp;
+
<img alt="wehchat" src="https://static.igem.org/mediawiki/2018/c/ca/T--NEFU_China--wechat.png">
+
+
</td>
+
<td style="padding-left: 70px!important;">
+
<h1>Contact us</h1>
+
<h2>iGEM-NEFU_China2018</h2>
+
<h2>Email: hexinglu@nefu.edu.cn</h2>
+
<h3>No.26 Hexing Road, Xiangfang <br>District, Harbin, Heilongjiang <br>Province 150000</h3>
+
</td>
+
</tr>
+
</table>
+
</div>
+
<div id="foot-declare">
+
<p>
+
+
</p>
+
</div>
+
 
</div>
 
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 01:52, 18 October 2018

Code Book

Code Book

In English text, each letter has a certain frequency. We constructed a list of letter frequencies for each letter. Also, in living organisms, each codon is used with a certain frequency. Based on this relationship between English letters and codons, we find out the correspondence between letters and codons by using DFS (Depth First Search) algorithm and optimization arithmetic.




Create a letter-frequency table and a codon-frequency table

According to the literature, we obtain the information of the frequency of letters and codons.
letter frequency table:

codon frequency table:





Find out the correspondence between letters and codons by using DFS Algorithm

We build up a tree structure where the codons and the frequency of the codons are stored on each node. Then we use the depth-first search algorithm to traverse down from the root node successively, and match condon-frequence with the letter- frequency to obtain the correspondence between letters and codons.
The tree structure is shown as bellow.





Get the optimal solution by using optional algorithm.

In step 2, we get the correspondence between letters and codons. But some letters have multiple corresponding relationships. For example, in figure 1, the letters E and T correspond to codons GAU, GCU, GAA, E and T also correspond to codons GAU, GCU, AUG. What’s more, the letter T can also correspond to codons GAU, GCU, GCA. Therefore, we use the optimal algorithm to determine one of the multiple correspondence.

For example (letter T):





RESULTS

Print the correspondence between letters and codons: