Difference between revisions of "Team:Calgary/Chromatin Modifying Elements"

(Undo revision 406390 by Cassandrasillner (talk))
 
(30 intermediate revisions by the same user not shown)
Line 22: Line 22:
 
             <h3 class="infosubtitle">Chromatin-Modifying Elements Overview</h3>
 
             <h3 class="infosubtitle">Chromatin-Modifying Elements Overview</h3>
 
             <br>
 
             <br>
             <p style="text-indent: 0px">Lorem ipsum dolor sit amet consectetur adipisicing elit. Consequuntur, totam laudantium, dolor porro laboriosam
+
             <p style="text-indent: 0px">Eukaryotic chassis vary significantly from prokaryotic chassis in certain elements pertaining to regulation of gene expression. Eukaryotes have a complex epigenetic code that involves histone modifications and DNA methylation, as well as innate defense mechanisms that target exogenous DNA inserts (Matzke et al., 2000). These factors contribute to the gradual reduction in expression of an integrated gene over time, commonly known as gene silencing. Furthermore, integrated genetic constructs often contain DNA regulatory elements such as enhancers and promoters that may interact bi-directionally with those endogenous to the genome (Recillas-Targa et al., 2004). Referred to as neighbourhood effects, these interactions can lead to highly variable and unpredictable expression levels of all genes involved.</p>
                illo tenetur velit nulla corrupti quasi non eum amet quod dolores, doloremque eius ad temporibus perferendis!
+
                Lorem ipsum dolor sit, amet consectetur adipisicing elit. Sit explicabo suscipit similique id expedita cum
+
                consequatur voluptatibus consectetur adipisci beatae unde, cupiditate inventore. Quis officiis quam porro
+
                a expedita non.</p>
+
 
             <br>
 
             <br>
             <p style="text-indent: 0px">Lorem ipsum dolor sit amet consectetur adipisicing elit. Temporibus rerum vel eius ut dolore, ab obcaecati officiis
+
             <p style="text-indent: 0px">In order to mitigate the aforementioned issues, our team investigated eukaryotic chromatin-modifying elements (CMEs). Within this broad category of DNA elements, insulators and ubiquitously-acting chromatin opening elements (UCOEs) were selected for further exploration due to their unique properties. We were interested in creating a <a href="https://2018.igem.org/Team:Calgary/Parts">collection of parts</a> in the registry that would help to increase the utility and efficiency of eukaryotic synthetic biology.</p>
                modi porro, sunt deleniti, consequatur assumenda asperiores aliquid recusandae tenetur neque quae suscipit!
+
                Lorem ipsum dolor sit amet consectetur adipisicing elit. Optio a quam iusto quo, nesciunt odit fuga, similique
+
                aspernatur veritatis nemo commodi libero nobis magnam necessitatibus, quidem maiores error debitis minima.
+
                Lorem ipsum dolor sit amet consectetur adipisicing elit. Quam ipsum consequatur, deserunt assumenda odio
+
                natus. Quis, ea dolor! Voluptas dolore, facere cum illo sunt consectetur nam a soluta optio perferendis.</p>
+
            <br>
+
            <p style="text-indent: 0px">Lorem ipsum dolor sit, amet consectetur adipisicing elit. Rerum sit perferendis eum delectus odit vero saepe,
+
                dignissimos aspernatur et libero quisquam minima soluta a suscipit tempora dolores non aliquid ratione? Lorem
+
                ipsum dolor, sit amet consectetur adipisicing elit. Sunt excepturi quod, doloribus et asperiores similique
+
                tempora, mollitia possimus doloremque officia deleniti eius aut dolorum fuga reiciendis adipisci esse quisquam
+
                quae.
+
            <img class="info-img" src="https://static.igem.org/mediawiki/2018/d/d2/T--Calgary--NDCCollaboration.png">
+
 
+
            </p>
+
 
             <br>
 
             <br>
 
             <h3 class="infosubtitle">Insulators</h3>
 
             <h3 class="infosubtitle">Insulators</h3>
 
             <br>
 
             <br>
             <p style="text-indent: 0px">Lorem ipsum dolor sit amet consectetur adipisicing elit. Consequuntur, totam laudantium, dolor porro laboriosam
+
             <p style="text-indent: 0px">The mechanisms of insulator function have been previously described in literature. When placed in between enhancer and promoter, insulator sequences recruit DNA-binding proteins capable of interfering with interactions between these regulatory elements (Ong et al., 2014). By designing a system in which our gene inserts are flanked by a well-characterized 1.2kb insulator sequence from the 5' end of the chicken β-globin (cHS4) gene, we aimed to create an isolated and protected pocket virtually free from such neighbourhood effects (Pikaart et al., 1998).</p>
                illo tenetur velit nulla corrupti quasi non eum amet quod dolores, doloremque eius ad temporibus perferendis!
+
          <img class="info-img" src="https://static.igem.org/mediawiki/2018/e/ee/T--Calgary--InsulatorsNeighbourhoodEffectsVertical.png">
                Lorem ipsum dolor sit, amet consectetur adipisicing elit. Sit explicabo suscipit similique id expedita cum
+
                consequatur voluptatibus consectetur adipisci beatae unde, cupiditate inventore. Quis officiis quam porro
+
                a expedita non.</p>
+
            <br>
+
            <p style="text-indent: 0px">Lorem ipsum dolor sit amet consectetur adipisicing elit. Temporibus rerum vel eius ut dolore, ab obcaecati officiis
+
                modi porro, sunt deleniti, consequatur assumenda asperiores aliquid recusandae tenetur neque quae suscipit!
+
                Lorem ipsum dolor sit amet consectetur adipisicing elit. Optio a quam iusto quo, nesciunt odit fuga, similique
+
                aspernatur veritatis nemo commodi libero nobis magnam necessitatibus, quidem maiores error debitis minima.
+
                Lorem ipsum dolor sit amet consectetur adipisicing elit. Quam ipsum consequatur, deserunt assumenda odio
+
                natus. Quis, ea dolor! Voluptas dolore, facere cum illo sunt consectetur nam a soluta optio perferendis.</p>
+
            <br>
+
            <p style="text-indent: 0px">Lorem ipsum dolor sit, amet consectetur adipisicing elit. Rerum sit perferendis eum delectus odit vero saepe,
+
                dignissimos aspernatur et libero quisquam minima soluta a suscipit tempora dolores non aliquid ratione? Lorem
+
                ipsum dolor, sit amet consectetur adipisicing elit. Sunt excepturi quod, doloribus et asperiores similique
+
                tempora, mollitia possimus doloremque officia deleniti eius aut dolorum fuga reiciendis adipisci esse quisquam
+
                quae.
+
            </p>
+
 
           <br>
 
           <br>
 +
            <p style="text-indent: 0px">In addition to their enhancer-blocking function, insulators can act as a barrier to prevent the spread of closed, unexpressed DNA known as heterochromatin which ultimately contributes to gene silencing. This is accomplished by recruiting or sequestering histone-modifying enzymes, as well as by blocking DNA methylation mechanisms (Giles et al., 2010).</p>
 +
          <img class="info-img" src="https://static.igem.org/mediawiki/2018/8/80/T--Calgary--InsulatorsHeterochromatinVertical.png">
 +
    <br>
 
           <h3 class="infosubtitle">Ubiquitously-Acting Chromatin Opening Elements (UCOEs)</h3>
 
           <h3 class="infosubtitle">Ubiquitously-Acting Chromatin Opening Elements (UCOEs)</h3>
 
             <br>
 
             <br>
             <p style="text-indent: 0px">Lorem ipsum dolor sit amet consectetur adipisicing elit. Consequuntur, totam laudantium, dolor porro laboriosam
+
             <p style="text-indent: 0px">UCOEs can be defined as methylation-free, CpG-rich sequences found upstream of housekeeping genes within eukaryotic genomes (Romanova et al., 2017). They function not only to prevent gene silencing, but can actively re-open closed chromatin by promoting demethylation of promoter DNA (Romanova et al., 2017).  We selected A2UCOE for use in our system, as it is the most commonly used UCOE sequence (Harraghy et al., 2015). The sustained increase in gene expression levels observed when using such a sequence in eukaryotic gene integration schemes has been thoroughly documented, though the mechanism utilized by these elements is not well-understood (Kunkiel et al., 2017).</p>
                illo tenetur velit nulla corrupti quasi non eum amet quod dolores, doloremque eius ad temporibus perferendis!
+
          <img style="width: 100%" src="https://static.igem.org/mediawiki/2018/2/2b/T--Calgary--UCOEs.png">
                Lorem ipsum dolor sit, amet consectetur adipisicing elit. Sit explicabo suscipit similique id expedita cum
+
          <br>
                consequatur voluptatibus consectetur adipisci beatae unde, cupiditate inventore. Quis officiis quam porro
+
            <h3 class="infosubtitle">Our Approach</h3>
                a expedita non.</p>
+
 
             <br>
 
             <br>
             <p style="text-indent: 0px">Lorem ipsum dolor sit amet consectetur adipisicing elit. Temporibus rerum vel eius ut dolore, ab obcaecati officiis
+
             <p style="text-indent: 0px">The ultimate goal of the Snip, Equip, Flip system is to integrate large-scale gene inserts into eukaryotic genomes in a targeted manner, as well as to maintain the expression levels of these gene inserts over time. Through extensive literature research, we were able to identify two unique chromatin-modifying elements to include in our system. A2UCOE and the chicken β-globin (cHS4) insulator were synthesized by Genscript with flanking restriction sites which allowed us to clone them into our multiple-cloning site, as outlined on the <a href="https://2018.igem.org/Team:Calgary/Parts">parts page</a>. We successfully cloned these parts into the pSB1C3 backbone for DNA submission. We hope to validate our system with experimentation in Flp-In T-REx HEK239 cells in the future.</p>
                modi porro, sunt deleniti, consequatur assumenda asperiores aliquid recusandae tenetur neque quae suscipit!
+
          <br>
                Lorem ipsum dolor sit amet consectetur adipisicing elit. Optio a quam iusto quo, nesciunt odit fuga, similique
+
          <p style="text-indent: 0px">By submitting the novel A2UCOE (<a href="http://parts.igem.org/Part:BBa_K2605003" target="_blank">BBa_K2605003</a>) and the chicken β-globin (cHS4) insulator (<a href="http://parts.igem.org/Part:BBa_K2605004" target="_blank">BBa_K2605004</a>) parts to the registry, we opened the door for the development new class of eukaryotic parts. They are valuable for use both with our parts collection and individually. Chromatin-modifying elements could help to increase the frequency of eukaryotic chassis-use, both within the scope of iGEM and beyond.</p>
                aspernatur veritatis nemo commodi libero nobis magnam necessitatibus, quidem maiores error debitis minima.
+
          <br>
                Lorem ipsum dolor sit amet consectetur adipisicing elit. Quam ipsum consequatur, deserunt assumenda odio
+
          <br>
                natus. Quis, ea dolor! Voluptas dolore, facere cum illo sunt consectetur nam a soluta optio perferendis.</p>
+
            <br>
+
            <p style="text-indent: 0px">Lorem ipsum dolor sit, amet consectetur adipisicing elit. Rerum sit perferendis eum delectus odit vero saepe,
+
                dignissimos aspernatur et libero quisquam minima soluta a suscipit tempora dolores non aliquid ratione? Lorem
+
                ipsum dolor, sit amet consectetur adipisicing elit. Sunt excepturi quod, doloribus et asperiores similique
+
                tempora, mollitia possimus doloremque officia deleniti eius aut dolorum fuga reiciendis adipisci esse quisquam
+
                quae.
+
            </p>
+
 
           <div class="apa-reference">
 
           <div class="apa-reference">
 
                 <br>
 
                 <br>
Line 92: Line 51:
 
                 <h4 style="text-align: center">WORKS CITED</h4>
 
                 <h4 style="text-align: center">WORKS CITED</h4>
 
                 <br>
 
                 <br>
             <p>Lewin, A., Mayer, M., Chusainow, J., Jacob, D., Appel, B. (2005). Viral promoters can initiate expression of toxin genes introduced into Escherichia coli. <i>Biomed Central Biotechnology, 5</i>(19). doi:  10.1186/1472-6750-5-19.</p>  
+
             <p>Giles, K.E., Gowher, H., Ghirlando, R., Jin, C., Felsenfeld, G. (2010). Chromatin boundaries, insulators, and long-range interactions in the nucleus. <i>Cold Spring Harbor Symposia on Quantitative Biology 75</i>, 79-85. doi: 10.1101/sqb.2010.75.006</p>
         
+
          <p>Kunkiel, J., Gödecke, N., Ackermann, M., Hoffmann, D., Schambach, A., Lachmann, N., Wirth, D., Moritz, T. (2017). The CpG-sites of the CBX3 ubiquitous chromatin opening element are critical structural determinants for the anti-silencing function <i>Scientific Reports, 7</i>7919. doi: 10.1038/s41598-017-04212-8.</p>
 +
            <p>Matzke, M.A., Mette, M.F., Matzke, A.J.M. (2000). Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. <i>Plant Molecular Biology, 43</i>(2-3), 401-415. doi: 10.1023/A:1006484806925.</p>
 +
            <p>Ong, C., Corces, V.G. (2014). CTCF: an architectural protein bridging genome topology and function. <i>Nature Reviews Genetics, 15</i>, 234–246.</p>
 +
            <p>Pikaart, M.J., Recillas-Targa, F., Felsenfeld, G. (1998). Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. <i>Genes & Development, 12</i>, 2852-2862. doi: 10.1101/gad.12.18.2852.</p>
 +
            <p>Recillas-Targa, F., Valadez-Graham, V., Farrell, C.M. (2004). Prospects and implications of using chromatin insulators in gene therapy and transgenesis. <i>BioEssays, 26</i>(7), 796-807.</p>
 +
            <p>Romanova, N., Noll, T. (2017). Engineered and natural promoters and chromatin‐modifying elements for recombinant protein expression in CHO cells. <i>Biotechnology Journal, 13</i>(3).</p>
 
         </div>
 
         </div>
 
         </div>
 
         </div>

Latest revision as of 03:07, 18 October 2018

Team:Calgary/Chromatin Modifying Elements - 2018.igem.org

CHROMATIN-MODIFYING ELEMENTS


Chromatin-Modifying Elements Overview


Eukaryotic chassis vary significantly from prokaryotic chassis in certain elements pertaining to regulation of gene expression. Eukaryotes have a complex epigenetic code that involves histone modifications and DNA methylation, as well as innate defense mechanisms that target exogenous DNA inserts (Matzke et al., 2000). These factors contribute to the gradual reduction in expression of an integrated gene over time, commonly known as gene silencing. Furthermore, integrated genetic constructs often contain DNA regulatory elements such as enhancers and promoters that may interact bi-directionally with those endogenous to the genome (Recillas-Targa et al., 2004). Referred to as neighbourhood effects, these interactions can lead to highly variable and unpredictable expression levels of all genes involved.


In order to mitigate the aforementioned issues, our team investigated eukaryotic chromatin-modifying elements (CMEs). Within this broad category of DNA elements, insulators and ubiquitously-acting chromatin opening elements (UCOEs) were selected for further exploration due to their unique properties. We were interested in creating a collection of parts in the registry that would help to increase the utility and efficiency of eukaryotic synthetic biology.


Insulators


The mechanisms of insulator function have been previously described in literature. When placed in between enhancer and promoter, insulator sequences recruit DNA-binding proteins capable of interfering with interactions between these regulatory elements (Ong et al., 2014). By designing a system in which our gene inserts are flanked by a well-characterized 1.2kb insulator sequence from the 5' end of the chicken β-globin (cHS4) gene, we aimed to create an isolated and protected pocket virtually free from such neighbourhood effects (Pikaart et al., 1998).


In addition to their enhancer-blocking function, insulators can act as a barrier to prevent the spread of closed, unexpressed DNA known as heterochromatin which ultimately contributes to gene silencing. This is accomplished by recruiting or sequestering histone-modifying enzymes, as well as by blocking DNA methylation mechanisms (Giles et al., 2010).


Ubiquitously-Acting Chromatin Opening Elements (UCOEs)


UCOEs can be defined as methylation-free, CpG-rich sequences found upstream of housekeeping genes within eukaryotic genomes (Romanova et al., 2017). They function not only to prevent gene silencing, but can actively re-open closed chromatin by promoting demethylation of promoter DNA (Romanova et al., 2017). We selected A2UCOE for use in our system, as it is the most commonly used UCOE sequence (Harraghy et al., 2015). The sustained increase in gene expression levels observed when using such a sequence in eukaryotic gene integration schemes has been thoroughly documented, though the mechanism utilized by these elements is not well-understood (Kunkiel et al., 2017).


Our Approach


The ultimate goal of the Snip, Equip, Flip system is to integrate large-scale gene inserts into eukaryotic genomes in a targeted manner, as well as to maintain the expression levels of these gene inserts over time. Through extensive literature research, we were able to identify two unique chromatin-modifying elements to include in our system. A2UCOE and the chicken β-globin (cHS4) insulator were synthesized by Genscript with flanking restriction sites which allowed us to clone them into our multiple-cloning site, as outlined on the parts page. We successfully cloned these parts into the pSB1C3 backbone for DNA submission. We hope to validate our system with experimentation in Flp-In T-REx HEK239 cells in the future.


By submitting the novel A2UCOE (BBa_K2605003) and the chicken β-globin (cHS4) insulator (BBa_K2605004) parts to the registry, we opened the door for the development new class of eukaryotic parts. They are valuable for use both with our parts collection and individually. Chromatin-modifying elements could help to increase the frequency of eukaryotic chassis-use, both within the scope of iGEM and beyond.





WORKS CITED


Giles, K.E., Gowher, H., Ghirlando, R., Jin, C., Felsenfeld, G. (2010). Chromatin boundaries, insulators, and long-range interactions in the nucleus. Cold Spring Harbor Symposia on Quantitative Biology 75, 79-85. doi: 10.1101/sqb.2010.75.006

Kunkiel, J., Gödecke, N., Ackermann, M., Hoffmann, D., Schambach, A., Lachmann, N., Wirth, D., Moritz, T. (2017). The CpG-sites of the CBX3 ubiquitous chromatin opening element are critical structural determinants for the anti-silencing function Scientific Reports, 77919. doi: 10.1038/s41598-017-04212-8.

Matzke, M.A., Mette, M.F., Matzke, A.J.M. (2000). Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Molecular Biology, 43(2-3), 401-415. doi: 10.1023/A:1006484806925.

Ong, C., Corces, V.G. (2014). CTCF: an architectural protein bridging genome topology and function. Nature Reviews Genetics, 15, 234–246.

Pikaart, M.J., Recillas-Targa, F., Felsenfeld, G. (1998). Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes & Development, 12, 2852-2862. doi: 10.1101/gad.12.18.2852.

Recillas-Targa, F., Valadez-Graham, V., Farrell, C.M. (2004). Prospects and implications of using chromatin insulators in gene therapy and transgenesis. BioEssays, 26(7), 796-807.

Romanova, N., Noll, T. (2017). Engineered and natural promoters and chromatin‐modifying elements for recombinant protein expression in CHO cells. Biotechnology Journal, 13(3).