Line 79: | Line 79: | ||
</div> | </div> | ||
<div class="block two-third"> | <div class="block two-third"> | ||
− | <p>The aim of our mathematical model is to simulate the growth of neurons towards our biofilm in response to the presence of pro Nerve Growth Factor (NGF) (Figure 1). NGF is part of a family of proteins called neurotrophins. They are responsible for the development of new neurons, and for the growth and maintenance of mature ones. We created a deterministic model to help the wet lab establish the optimal concentration gradients of NGF needed for the regrowth of the nerves. NGF concentration and concentration gradient are key parameters affecting the growth rate and direction of neurites. Neurites growth has shown to be NGF dose-dependent: if NGF concentration is too low or too high, the growth rate is attenuated. In order to visualize the results of the model on a | + | <p>The aim of our mathematical model is to simulate the growth of neurons towards our biofilm in response to the presence of pro Nerve Growth Factor (NGF) (Figure 1). NGF is part of a family of proteins called neurotrophins. They are responsible for the development of new neurons, and for the growth and maintenance of mature ones. We created a deterministic model to help the wet lab establish the optimal concentration gradients of NGF needed for the regrowth of the nerves. NGF concentration and concentration gradient are key parameters affecting the growth rate and direction of neurites. Neurites growth has shown to be NGF dose-dependent: if NGF concentration is too low or too high, the growth rate is attenuated. In order to visualize the results of the model on a microchannel, we used MATLAB and Python. This is an important part of our project since it creates the link between the wet lab and dry lab. </p> |
</div> | </div> | ||
<div class="block one-third"> | <div class="block one-third"> | ||
Line 275: | Line 275: | ||
</div> | </div> | ||
<div class="block full"> | <div class="block full"> | ||
− | <p>The synthesis of NGF and TEV is placed under the control of Plac promoter. The promoter can be in two different states: occupied (Po) by the repressor lacI, preventing RNA polymerase from binding and thus preventing transcription, or free (Pf) thanks to IPTG binding to the repressor. We assume that one IPTG molecule binds with one repressor molecule, freeing the promoter and restoring RNA polymerase binding capacity. The real mechanism of promoter Plac is more complex, as described in [1], but this simplification is sufficient for our model.</p> | + | <p>The synthesis of NGF and TEV is placed under the control of the Plac promoter. The promoter can be in two different states: occupied (Po) by the repressor lacI, preventing RNA polymerase from binding and thus preventing transcription, or free (Pf) thanks to IPTG binding to the repressor. We assume that one IPTG molecule binds with one repressor molecule, freeing the promoter and restoring RNA polymerase binding capacity. The real mechanism of promoter Plac is more complex, as described in [1], but this simplification is sufficient for our model.</p> |
</div> | </div> | ||
<div class="block one-third center"> | <div class="block one-third center"> | ||
Line 520: | Line 520: | ||
</div> | </div> | ||
<div class="block full"> | <div class="block full"> | ||
− | <p>The aim of this first model is to demonstrate that we can expect an appropriate secreted recombinant NGF concentration to observe neurite growth. However, we had to make several assumptions to parametrize the model. We scanned different parameter values for the values we assumed (such as number of transporters or kinetic parameters for translocation) in order to check the range of NGF amount we can reasonably expect. We also studied influence of IPTG induction and number of bacteria, since they are parameters our | + | <p>The aim of this first model is to demonstrate that we can expect an appropriate secreted recombinant NGF concentration to observe neurite growth. However, we had to make several assumptions to parametrize the model. We scanned different parameter values for the values we assumed (such as the number of transporters or kinetic parameters for translocation) in order to check the range of NGF amount we can reasonably expect. We also studied the influence of IPTG induction and number of bacteria, since they are parameters our wet lab can control to best fit recombinant NGF secretion with what we need.</p> |
</div> | </div> | ||
<div class="block title"> | <div class="block title"> | ||
Line 526: | Line 526: | ||
</div> | </div> | ||
<div class="block full"> | <div class="block full"> | ||
− | <p>We co-transformed our bacteria with a plasmid expressing HlyB and HlyD, two of the components of the secretion pore. However, we did not quantify the number of pores each cell contains, and we are only able to estimate it, based on assumptions made in [5]. Consequently, we scanned a range of different values for the | + | <p>We co-transformed our bacteria with a plasmid expressing HlyB and HlyD, two of the components of the secretion pore. However, we did not quantify the number of pores each cell contains, and we are only able to estimate it, based on assumptions made in [5]. Consequently, we scanned a range of different values for the number of transporters in order to see the range of NGF concentration we can expect.</p> |
<p>The following graph shows the predicted NGF concentration in the microfluidic chip chamber for a number of pores varying: no pore (A.), 10 per cell (B.), 100 per cell (C.) and 500 per cell (D.):</p> | <p>The following graph shows the predicted NGF concentration in the microfluidic chip chamber for a number of pores varying: no pore (A.), 10 per cell (B.), 100 per cell (C.) and 500 per cell (D.):</p> | ||
</div> | </div> | ||
Line 535: | Line 535: | ||
</div> | </div> | ||
<div class="block full"> | <div class="block full"> | ||
− | <p>We co-transformed our bacteria with a plasmid expressing HlyB and HlyD, two of the components of the secretion pore. However, we did not quantify the number of pores each cell contains, and we are only able to estimate it, based on assumptions made in [5]. Consequently, we scanned a range of different values for the | + | <p>We co-transformed our bacteria with a plasmid expressing HlyB and HlyD, two of the components of the secretion pore. However, we did not quantify the number of pores each cell contains, and we are only able to estimate it, based on assumptions made in [5]. Consequently, we scanned a range of different values for the number of transporters in order to see the range of NGF concentration we can expect.</p> |
<p>The following graph shows the predicted NGF concentration in the microfluidic chip chamber for a number of pores varying: no pore (A.), 10 per cell (B.), 100 per cell (C.) and 500 per cell (D.):</p> | <p>The following graph shows the predicted NGF concentration in the microfluidic chip chamber for a number of pores varying: no pore (A.), 10 per cell (B.), 100 per cell (C.) and 500 per cell (D.):</p> | ||
</div> | </div> | ||
Line 549: | Line 549: | ||
<p>As expected, the more transporters the cell has, the more recombinant NGF is secreted, but the amount of functional secreted NGF (in blue) remains limited due to TEV protease cleaving efficiency. </p> | <p>As expected, the more transporters the cell has, the more recombinant NGF is secreted, but the amount of functional secreted NGF (in blue) remains limited due to TEV protease cleaving efficiency. </p> | ||
<p>Taking in account the number of <i> E. coli </i> cells and the dilution factor between intracellular and extracellular space, we obtain for 500 transporters a concentration of functional NGF of 1 nM, which corresponds to 24 ng/mL. This is still 10 times lower than what we need to observe neurite growth. | <p>Taking in account the number of <i> E. coli </i> cells and the dilution factor between intracellular and extracellular space, we obtain for 500 transporters a concentration of functional NGF of 1 nM, which corresponds to 24 ng/mL. This is still 10 times lower than what we need to observe neurite growth. | ||
− | Enhancing signal peptide cleavage by a more efficient enzyme should help solve the problem | + | Enhancing signal peptide cleavage by a more efficient enzyme should help solve the problem since we could expect 5 nM functional NGF if the totality of the secreted NGF were cleaved. |
</p> | </p> | ||
</div> | </div> | ||
Line 556: | Line 556: | ||
</div> | </div> | ||
<div class="block two-third"> | <div class="block two-third"> | ||
− | <p> One of the parameters our | + | <p> One of the parameters our wet lab team is able to adjust is IPTG induction in the microchannel chip in order to optimize the obtained NGF concentration. Consequently, we studied the dependence of secreted NGF with IPTG initial concentration.</p> |
− | <p> As expected the final NGF concentration (both in the cytoplasm and in extracellular medium) is an increasing function of IPTG induction. As our | + | <p> As expected the final NGF concentration (both in the cytoplasm and in extracellular medium) is an increasing function of IPTG induction. As our wet lab did not succeed in quantifying the secreted NGF, it is hard to figure out whether or not the desired concentration was obtained, but if our assumptions are valid, it could be reached with reasonable IPTG concentrations. Production of NGF with the tag has been detected by Mass spectrometry.</p> |
</div> | </div> | ||
<div class="block one-third"> | <div class="block one-third"> | ||
Line 614: | Line 614: | ||
<p>C<SUB>diff</SUB> is assumed to be constant inside the conduit and depends on the material used.<br></p> | <p>C<SUB>diff</SUB> is assumed to be constant inside the conduit and depends on the material used.<br></p> | ||
− | <p>The equation (1) can be solved with Euler’s method and we find the NGF concentration gradient at the position x and time t. We displayed our results showing a decrease | + | <p>The equation (1) can be solved with Euler’s method and we find the NGF concentration gradient at the position x and time t. We displayed our results showing a decrease in the concentration of NGF (u(x,t)) depending on the distance of the conduit x.</p> |
</div> | </div> | ||
Line 723: | Line 723: | ||
<div class="block title"> | <div class="block title"> | ||
<h1>Neurons growth in the presence of NGF</h1><br> | <h1>Neurons growth in the presence of NGF</h1><br> | ||
− | <p><i>In this part our goal is to determine the length of the neurite outgrowth (g(t)) in response to the gradient concentration of NGF. This step is the last one in our neurotrophin | + | <p><i>In this part our goal is to determine the length of the neurite outgrowth (g(t)) in response to the gradient concentration of NGF. This step is the last one in our neurotrophin modelization. It aims at building a persistent model which should give two relevant pieces of information regarding the use of the interface NeuronArch : |
</br>-The model must be able to indicate an estimated value of the time needed for the nerves to grow of a certain distance | </br>-The model must be able to indicate an estimated value of the time needed for the nerves to grow of a certain distance | ||
</br>-The model must be of use to provide the optimized parameters to boost the nerves growth | </br>-The model must be of use to provide the optimized parameters to boost the nerves growth | ||
Line 845: | Line 845: | ||
<div class="block full"> | <div class="block full"> | ||
<p>We noticed that there was a mistake in the article regarding the gradient steepness-dependent factor k. Therefore, by examining the results of the article, we were able to find a new coherent value of k, different from what was originally written in the article. To see the details of the mistake and our strategy to find the right value, <a href="https://static.igem.org/mediawiki/2018/2/28/T--Pasteur_Paris--ModelisationMistakes.pdf"style="font-weight: bold ; color:#85196a;" target="__blank">click here.</a></p> | <p>We noticed that there was a mistake in the article regarding the gradient steepness-dependent factor k. Therefore, by examining the results of the article, we were able to find a new coherent value of k, different from what was originally written in the article. To see the details of the mistake and our strategy to find the right value, <a href="https://static.igem.org/mediawiki/2018/2/28/T--Pasteur_Paris--ModelisationMistakes.pdf"style="font-weight: bold ; color:#85196a;" target="__blank">click here.</a></p> | ||
− | <p>In the following graphs, the red curve corresponds to a nerve growth inside a | + | <p>In the following graphs, the red curve corresponds to a nerve growth inside a unidimensional canal without any NGF while the blue one corresponds to the situation where there is an NGF gradient inside the canal. </p> |
<p>Our strategy to compute this phenomenon is the following. </p> | <p>Our strategy to compute this phenomenon is the following. </p> | ||
<p>For each different time, (spaced by the value dt) the position (in cm) of an axon is put inside two unidimensional matrices, g and g<sub>control</sub>. The matrix g holds the values of positions when there is a gradient of NGF, while there isn’t for g<sub>control</sub>. At each time and for the corresponding position, the script we used to calculate the gradient of NGF (in part 2 ) is ran with those new parameters. As we obtain the value of the gradient of NGF at this time and at a position g<sub>n</sub>, we can calculate the new position at the end of the axon g<sub>n+1</sub> by using the formula written above. Tlag is set as 10 000 s for the rest of the modeling. </p> | <p>For each different time, (spaced by the value dt) the position (in cm) of an axon is put inside two unidimensional matrices, g and g<sub>control</sub>. The matrix g holds the values of positions when there is a gradient of NGF, while there isn’t for g<sub>control</sub>. At each time and for the corresponding position, the script we used to calculate the gradient of NGF (in part 2 ) is ran with those new parameters. As we obtain the value of the gradient of NGF at this time and at a position g<sub>n</sub>, we can calculate the new position at the end of the axon g<sub>n+1</sub> by using the formula written above. Tlag is set as 10 000 s for the rest of the modeling. </p> | ||
Line 963: | Line 963: | ||
</div> | </div> | ||
<div class="block full"> | <div class="block full"> | ||
− | <p>The results show that | + | <p>The results show that the more the initial concentration of NGF increases, the more its gradient reaches higher values and therefore the faster the neurons grow. It would appear that increasing the initial concentration of NGF would help to boost the nerve growth. However, if the concentration of NGF is too high, it would cause the opposite effect as neurons would start to die. Finding the right compromise, depending on the length of our final device and the coefficient diffusion of NGF in the future media, will be of paramount importance. Finding this compromise will be possible thanks to our model. </p> |
</div> | </div> | ||
<div class="block title"><h3>COMPARISON WITH EXPERIMENTAL WORKS</h3></div> | <div class="block title"><h3>COMPARISON WITH EXPERIMENTAL WORKS</h3></div> | ||
<div class="block full"> | <div class="block full"> | ||
− | <p>Our modeling work has permitted us to study the secretion, diffusion and influence of NGF on the growth of the neurons. With our model, we are able to optimize two parameters : the length of the | + | <p>Our modeling work has permitted us to study the secretion, diffusion, and influence of NGF on the growth of the neurons. With our model, we are able to optimize two parameters: the length of the microchannels and the initial concentration. |
The wet lab took into consideration our results to do the experiments on the influence of the concentration of NGF on the growth of the axons. Indeed, they observed the growth of the axons of E18 cortex cells for different concentrations of NGF: 0, 50, 250, 500, 750 and 900 ng/mL. The wet lab’s results were coherent with our model. | The wet lab took into consideration our results to do the experiments on the influence of the concentration of NGF on the growth of the axons. Indeed, they observed the growth of the axons of E18 cortex cells for different concentrations of NGF: 0, 50, 250, 500, 750 and 900 ng/mL. The wet lab’s results were coherent with our model. | ||
− | </p> <p>The experiments show that until a certain concentration the growth of the neurons increases with the presence of NGF. For a concentration between 250 and 750 ng/mL the presence of NGF increases significantly the growth of the axons. On the model (Figure 20 and 21), the higher the NGF concentration, the higher the gradient concentration of NGF so the faster the neurons will grow.</p> | + | </p> <p>The experiments show that until a certain concentration the growth of the neurons increases with the presence of NGF. For a concentration between 250 and 750 ng/mL, the presence of NGF increases significantly the growth of the axons. On the model (Figure 20 and 21), the higher the NGF concentration, the higher the gradient concentration of NGF so the faster the neurons will grow.</p> |
<div class="block half"> | <div class="block half"> | ||
Line 982: | Line 982: | ||
− | <p>The model helped the wet lab establish the concentration limit of NGF above which the NGF doesn’t have any more influence on the growth of the neurons. The wet lab’s concentration limit is coherent with ours: their concentration limit is | + | <p>The model helped the wet lab establish the concentration limit of NGF above which the NGF doesn’t have any more influence on the growth of the neurons. The wet lab’s concentration limit is coherent with ours: their concentration limit is approximately 900 ng/mL whilst the model shows a concentration limit of 995 ng/mL<sup>[8]</sup>.</p> |
− | <p>The wet lab has done the series of experiments on a 96 wells plate in order to optimize the number of samples. The next step for the | + | <p>The wet lab has done the series of experiments on a 96 wells plate in order to optimize the number of samples. The next step for the wet lab is to experimentally verify the influence of the length of the microchannels in the microfluidic chip on the growth of the nerves. The model is able to provide information on the optimization of the length of the microchannels which could be of use for the wet lab. Another improvement would be to calculate the diffusion coefficient in the microfluidic chip media. |
</p> | </p> | ||
</div> | </div> | ||
<div class="block title"><h3>PERSPECTIVES </h3></div> | <div class="block title"><h3>PERSPECTIVES </h3></div> | ||
<div class="block full"> | <div class="block full"> | ||
− | <p>Our model will be used to prototype the final device to help and establish the NGF concentration needed to control nerves’ growth. The length of the nerves needed to reach the interface depends on individual. As mentioned in the <a href="https://2018.igem.org/Team:Pasteur_Paris/Scenario" style="font-weight: bold ; color:#85196a;"target="_blank">design scenario</a>, chemical induction for bacteria regarding NGF production might be considered. Since the model manages to link induction to diffusion to nerves growth, it will enable to know how much NGF needs to be produced for each individual.</p> | + | <p>Our model will be used to prototype the final device to help and establish the NGF concentration needed to control nerves’ growth. The length of the nerves needed to reach the interface depends on the individual. As mentioned in the <a href="https://2018.igem.org/Team:Pasteur_Paris/Scenario" style="font-weight: bold ; color:#85196a;"target="_blank">design scenario</a>, chemical induction for bacteria regarding NGF production might be considered. Since the model manages to link induction to diffusion to nerves growth, it will enable to know how much NGF needs to be produced for each individual.</p> |
<p>The next step consists in keep trying to get in touch with the authors of the article or contacting other experts to make our model completely fulfill its major role in NeuronArch. | <p>The next step consists in keep trying to get in touch with the authors of the article or contacting other experts to make our model completely fulfill its major role in NeuronArch. | ||
</p> | </p> | ||
Line 1,000: | Line 1,000: | ||
</div> | </div> | ||
<div class="block two-full"> | <div class="block two-full"> | ||
− | <p>Neuronarch aims at making the prosthesis of the future and making it more comfortable and protective for the patient. For this sake and to facilitate surgical interventions we modeled the behavior of a bone under mechanical stress. We presented our tools and scripts to Dr. Laurent Sedel, an orthopedic surgeon at Hôpital Lariboisière and researcher at the Hôpital Ambroise Paré – Hôpitaux | + | <p>Neuronarch aims at making the prosthesis of the future and making it more comfortable and protective for the patient. For this sake and to facilitate surgical interventions we modeled the behavior of a bone under mechanical stress. We presented our tools and scripts to Dr. Laurent Sedel, an orthopedic surgeon at Hôpital Lariboisière and researcher at the Hôpital Ambroise Paré – Hôpitaux Universitaires Paris Ile-de-France Ouest, in the hopes of using our tools to improve the lifespan of prosthesis.</p></div> |
<div class="block two-third center"> | <div class="block two-third center"> | ||
<img src="https://static.igem.org/mediawiki/2018/1/13/T--Pasteur_Paris--ModelMecha.png"> | <img src="https://static.igem.org/mediawiki/2018/1/13/T--Pasteur_Paris--ModelMecha.png"> |
Revision as of 03:19, 18 October 2018
First aspect modeled : secretion, diffusion and influence of NGF
The aim of our mathematical model is to simulate the growth of neurons towards our biofilm in response to the presence of pro Nerve Growth Factor (NGF) (Figure 1). NGF is part of a family of proteins called neurotrophins. They are responsible for the development of new neurons, and for the growth and maintenance of mature ones. We created a deterministic model to help the wet lab establish the optimal concentration gradients of NGF needed for the regrowth of the nerves. NGF concentration and concentration gradient are key parameters affecting the growth rate and direction of neurites. Neurites growth has shown to be NGF dose-dependent: if NGF concentration is too low or too high, the growth rate is attenuated. In order to visualize the results of the model on a microchannel, we used MATLAB and Python. This is an important part of our project since it creates the link between the wet lab and dry lab.
We divided our model in three parts:
- Production of NGF by the genetically modified Escherichia coli
- Simulation of the diffusion of NGF in a given environment
- Neurons growth in the presence of NGF
Context of our model
Our project aims at creating a biofilm composed of genetically modified E. coli able to release a neurotrophic factor: NGF. It helps to accelerate the connection between the neurons and the implant of the prosthesis; hence aiming at connecting the prosthesis and the amputee's neurons directly. This will enable the patient to have a more instinctive control of his prosthetic device. The nerves will be guided towards a conductive membrane surrounding our genetically modified biofilm (Figure 2). This membrane will then pass the neural signal of the regenerated nerves towards the electronic chip of the implant through wires. It will allow the patient to have a more instinctive and natural control than any other current prosthesis, and a reduced re-education time.
The aim of the wet lab is to test the biofilm on a microfluidic chip as a proof of concept. The chip is composed of two compartments: one contains the genetically modified E. coli that produce NGF and the other one contains neurons (Figure 3). Microchannels link the two compartments in the middle of the chip, allowing the diffusion of NGF and the growth of the neurites. Our model will hence be established on a microfluidic chip shape in order to share our results with the wet lab and indicate them the optimal concentration of NGF needed according to our model. All the codes we used in this part are available here.
We introduce different parameters in order to create our model :
g | Length of the neurite outgrowth |
dg/dt
|
Neurite outgrowth rate |
u(x,t) | Concentration of NGF at the position x and time t |
du/dt
|
NGF concentration gradient at the position x and time t |
Cdiff | Diffusion coefficient of NGF |
K | Gradient factor (growth rate of the neurite under the stimulation of the NGF concentration gradient) |
Gθ | Baseline growth rate (neurite growth rate in absence of NGF concentration gradient) |
L | Length of the conduit |