Difference between revisions of "Team:Madrid-OLM/AptamerProtocols"

(Created page with "{{Madrid-OLM/1}} <html lang="en"> <head> <meta charset="utf-8"> <title>Titulo del apartado</title> <meta name="viewport" content="width=device-widt...")
 
 
(90 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{Madrid-OLM/1}}
 
{{Madrid-OLM/1}}
 
<html lang="en">
 
<html lang="en">
 +
    <style>
 +
        .tittle-secc{
 +
            padding-top: 8em !important;
 +
        }
 +
        .ourlist{ 
 +
            font-size: 80% !important;
 +
        }
 +
        .nomargin{
 +
            margin-bottom: 0.3em !important;
 +
        }
 +
        .tittlelist{
 +
            margin-top: 15px !important;
 +
            margin-bottom: 10px !important;
 +
        }
 +
        .green{
 +
            color: green;
 +
        }
 +
        .purple{
 +
            color: purple;
 +
        }
 +
        .red{
 +
            color: red;
 +
        }
 +
    </style>
 +
   
 
     <head>
 
     <head>
 
         <meta charset="utf-8">
 
         <meta charset="utf-8">
         <title>Titulo del apartado</title>
+
         <title>Aptamer`s Protocols</title>
 
         <meta name="viewport" content="width=device-width, initial-scale=1.0">
 
         <meta name="viewport" content="width=device-width, initial-scale=1.0">
         <meta name="description" content="Site Description Here">
+
         <meta name="description" content="Protocols used un the descovery and characterization of the aptamers">
 
     </head>
 
     </head>
 
     <body class=" ">
 
     <body class=" ">
Line 16: Line 41:
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="#story" class="inner-link" data-title="1 apartado"></a>
+
                         <a href="#Discovery" class="inner-link" data-title="Aptamer Discovery"></a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="#ceremony" class="inner-link" data-title="2 apartado"></a>
+
                         <a href="#characterization" class="inner-link" data-title="Aptamer Characterization"></a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="#couple" class="inner-link" data-title="3 apartado"></a>
+
                         <a href="#Electrode" class="inner-link" data-title="Sinthesis of the electrode"></a>
                    </li>
+
                    <li>
+
                        <a href="#reception" class="inner-link" data-title="4 apartado"></a>
+
                    </li>
+
                    <li>
+
                        <a href="#rsvp" class="inner-link" data-title="5 Apartado"></a>
+
 
                     </li>
 
                     </li>
 
                 </ul>
 
                 </ul>
 
             </section>
 
             </section>
 
              
 
              
             <section id="home" class="cover height-100 imagebg text-center parallax" data-overlay="3">
+
             <section id="home" class="tittle-secc text-center switchable feature-large">
                 <div class="background-image-holder">
+
                 <div class="container">
                     <img alt="background" src="img/wedding-1.jpg" />  <!-- Imagen del apartado si se necesita -->
+
                     <div class="row justify-content-around">
                </div>
+
                        <div class="col-md-8 col-lg-8">
                <div class="container pos-vertical-center">
+
                            <h1 id="Teamtittle">Aptamer's Protocols</h1>
                    <div class="row">
+
                             <p class="lead" style="font-size: 95%;">
                        <div class="col-md-12">
+
                                 Aptamers offer an endless number of possibilities, however, in iGEM hasn't settled as a main tool.  So far, the cost and difficulty to work with them have been the bottleneck.
                             <h1 class="h1--large">
+
                             </p>
                                 Titulo del apartado
+
                             <p class="lead" style="font-size: 95%;">  
                             </h1>
+
                                 We offer the workflow that we had been successful and relatively cheaper than the others techniques
                             <p class="lead">
+
                                 Alguna descripcion si queremos
+
 
                             </p>
 
                             </p>
                            <a class="btn btn--primary type--uppercase inner-link" href="#rsvp">
 
                                <span class="btn__text">
 
                                    Posible boton a alguna zona importante
 
                                </span>
 
                            </a>
 
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
Line 58: Line 70:
 
             </section>
 
             </section>
 
              
 
              
             <section id="story" class="text-center">
+
           
 +
            <!--Discovery protocols-->
 +
             <section id="Discovery" class="text-center">
 
                 <div class="container">
 
                 <div class="container">
                     <div class="row">
+
                     <div class="row boxed boxed--border bg--secondary boxed--lg box-shadow">
                         <div class="col-md-10 col-lg-8">
+
                         <div class="col-md-10 col-lg-10">
                             <h2>Apartado 1</h2>
+
                             <h2>Aptamer Discovery</h2>
                             <p class="lead">
+
                                Cosas del apartado 1, se necesita meter mas divs seguramente
+
                             <div id="dicoverymenu" class="tabs-container" data-content-align="center">
                            </p>
+
                                <ul class="tabs">
 +
                                    <li class="active">
 +
                                        <div class="tab__title">
 +
                                            <span id="Selex" class="h5">SELEX</span>
 +
                                        </div>
 +
                                        <div class="tab__content ">
 +
                                            <h3>SELEX</h3>
 +
                                            <p class="lead nomargin">Bill Of Materials: You could see a complete BoM <a href="https://static.igem.org/mediawiki/2018/e/e5/T--Madrid-OLM--Experiments--Protocols_--Aptamers--MaterialqSelex.pdf">here.</a></p>
 +
                                            <p class="lead nomargin">Amount of time: 1 day</p>
 +
                                            <p class="lead nomargin">Total  costs: 40 € (with iGEM sponsor).</p>
 +
                                            <ol class="ourlist">
 +
                                                <h4 class="tittlelist">DIY nitrocellulose column manufacture</h4>                          <li class="nomargin"> <p class="lead">Download the columns of the stl files from <a href="http://github.com/OpenLabMadrid/iGEM-Madrid-OLM/tree/master/Nitrocellulose%20columns">our github repository</a>.</p></li>
 +
                                                <li class="nomargin"><p class="lead">3D print the stl models in PETG. For more information about the reasons why we choose this material see the results page.</p></li>
 +
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: We have found the following parameters as the optimal ones printing with a Prusa i3 machine:</p>
 +
                                                <p class="lead nomargin">    -Filaments diameter of 1.75mm</p>
 +
                                                <p class="lead">    -Nozzle at 230ºC. Base 80ºC with Nelly hairspray. (CAUTION: The brand of the headspray must be Nelly.</p>
 +
                                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/8/8b/T--Madrid-OLM--Experiments--Protocols_--Aptamers--3DColums.gif" style="width:50%;"/>
 +
                                                <li class="nomargin"> <p class="lead">Separate the 3D printed structures from the printer base. Remove the excess of printed material.</p></li>
 +
                                                <li><p class="lead">Treat the columns with dichloromethane until the surface gets smooth. </p></li>
 +
                                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/f/fb/T--Madrid-OLM--Experiments--Protocols_--Aptamers--MontColumns.gif" style="width:50%;"/>
 +
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: For us it have worked putting the columns in glass jar, above a cardboard pedestal. Then cover the base of the jar with dichloromethane without touching the 3D printed files. Put the jard on the 3D printed hotbed at 80ºC for 20 minutes.</p>
 +
                                                <li class="nomargin"> <p class="lead">Wash the columns three times in deionized water to clean them from dicloromethane.</p></li>
 +
                                                <li class="nomargin"> <p class="lead">Put the columns in sterilizing solution (0,1N NaOH, 1% (m/v) EDTA) to inactivate DNAses and remove other pollutants. Keep overnight at room temperature.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Keep in milliQ water until its use. </p></li>
 +
                                               
 +
                                                <h4 class="tittlelist">Designing and ordering the initial library</h4>
 +
                                                <li class="nomargin"> <p class="lead">Design your library as a DNA of 30-40 random nucleotides flanked by constant extremes of 12-18 nucleotides. Use HPLC purification. Also order the primers for this constant edges.</p></li>
 +
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: For us, IDT have worked well as a DNA provider. They are also iGEM sponsor at our year, so this libraries could be free for igem teams.</p>
 +
                                                <p class="lead "><spam class="purple">ADVICE</spam>: The following sequence have fit well to us:</p>
 +
                                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/c/ca/T--Madrid-OLM--Experiments--Protocols_--Aptamers--AptamerLibrary.jpg" />
 +
 
 +
                                               
 +
                                                <h4>START SELEX CICLE</h4>
 +
                                                <h4 class="tittlelist">Prepare the library pool</h4>
 +
                                                <li class="nomargin"> <p class="lead">Resuspend 2 nmol de la library pool on 200 µl of Binding Buffer (Tris-HCl PH= 7,4 20 mM; MgCl21mM; NaCl 150mM; KCl 5 mM).</p></li>
 +
                                                <li class="nomargin"><p class="lead">Denatured the library by heating it at 90ºC for 10 min and immediately cold it on ice for another 10 min.</p></li>
 +
                                                <li><p class="lead">Wash in distilled water and  mount the nitrocellulose column by cutting a small square of the membrane and then pre-wet it with the BB.</p></li>
 +
                                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/6/66/T--Madrid-OLM--Experiments--Protocols_--Aptamers--putmembrane.gif" style="width:30%;"/>
 +
                                                <p class="lead nomargin"><spam class="red">CAUTION</spam>: The colums break easily, so do not aplyy too much force on them.</p>
 +
                                                <li class="nomargin"><p class="lead">To get rid of the DNA that unespecifically binds to the system, apply the library through  a nitrocellulose  membrane and centrifuge 1 min at 8000 rpm. Quantify the DNA that does  not bind unspeficically and note it as the initial DNA.</p></li>
 +
                                               
 +
                                                <h4 class="tittlelist">Protein-Aptamer incubation</h4>
 +
                                                <li class="nomargin"> <p class="lead">Incubate the flowthrough with the protein of interest during 1 hour.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Apply the DNA to a new nitrocellulose  membrane as in step 11.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Wash the membrane four times with 300 µl of BB, like on step 11.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Recover the membrane and transfer it to a new Eppendorf  tube.</p></li>
 +
                                                <p class="lead nomargin"><spam class="red">CAUTION</spam>: Do not let the membrane dry, as it becomes fragile and the mollecules inside it could be damage.</p>
 +
                                               
 +
                                                <h4 class="tittlelist">Denatured the protein and elute the selected DNAs</h4>
 +
                                                <li class="nomargin"> <p class="lead">Add 400µL of FES and 500 µL of phenol and mix in a thermomixer/ vortex at 1.400 rpm for 10 min.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Transfer the liquid to a new tube and repeat step 8 but this time with 200 µl of each regeant.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Mix the two samples and add 200 µl of Milli-Q wáter to allow the phase separation and centrifuge 10 min at 16100 g.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Transfer the aqueous phase (upper) to a new 2 ml tube and made a PCI or Qiagen (link) columns to extract the DNA. Resuspend the purified DNA in 30 ul of Milli-Q water.</p></li>
 +
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: Qiagen colums recover more DNA and also reduced the time of the purification, but are more expensive.</p>
 +
                                                <p class="lead"><spam class="green">PAUSE POINT</spam>:You can leave the PCI precipitation overnight (see PCI protocol), or the Qiagen Purified DNA in the fridge at 4ºC.</p>
 +
                                               
 +
                                                <h4 class="tittlelist">Library amplification</h4>
 +
                                                <li class="nomargin"> <p class="lead">Prepare the PCR mixture for a final volume of 50 µl per reaction and a final primer concentration of 0,8 µM. For the first round use all the template recover after the incubation.
 +
                                                For the next rounds use 20 ul of template and adjust the rest according to the reagent you use.</p></li>
 +
                                                <li ><p class="lead">Perform the amplification with the following amplification conditions. Adjust the annealing temperature according to the primers used, and the hotstart to the specifications of your polymerase:</p></li>
 +
                                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/6/60/T--Madrid-OLM--Experiments--Protocols_--Aptamers--Selex1.jpg" />                                     
 +
                                                <li class="nomargin"><p class="lead">Prepare an agarose gel at 3%. Load the samples and perform the electrophoresis at 90V for 50 min. </p></li>
 +
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: We strongly recommend to quantify the DNA by gel molecular mass marker instead other methods like nanodrop. Add in this step to the first line of your gel  if you decide to use this method.</p>
 +
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: For revealing the gel bands, GelRed have fits correctly to our purpose. We have put the GelRed before the gel polymerization step inside the mixture, following the product specifications.</p>
 +
                                                <li class="nomargin"><p class="lead">Remove the gel and observe the bands under UV light.</p></li>
 +
                                                <li class="nomargin"><p class="lead">It is needed at least 1 ug to continue with the next round. If it not accomplish, a further amplification is needed (continue reading). If you succeed amplifying with 10 cyclis this amount of DNA, skip the next steps and continue repeating this steps to do the next SELEX round.</p></li>
 +
                                                <p class="lead nomargin"><spam class="green">PAUSE POINT</spam>:The library can be stored at -20ºC </p>
 +
                                                <p class="lead"><spam class="red">CAUTION</spam>: We strongly recommend you to keep a little portion of each round of selection as a backup plan in case that you lost your DNA in further rounds. Keep in mind this when you amplify your DNA, because you will need more that the 1ug of DNA used in the next SELEX round. </p>
 +
                                               
 +
                                                <h4 class="tittlelist">Determination the optimal number of amplification cycles:</h4>
 +
                                                <li class="nomargin"> <p class="lead">The total PCR reaction mixture volume for each tube is 50 µl using as template 0,5 µl of the library amplified before, for each tube, and a final primers concentration of 0.8µM.  Choose PCR samples at the following cycles:5, 10, 15, 20, 25. Also a negative control tube at the twentieth cycle.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Perform the PCR amplification with the same condition as step 22 and take the samples at the specified cycles</p></li>
 +
                                                <li class="nomargin"> <p class="lead">Prepared an agarose gel at 3%.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Perform the electrophoresis gel at 90V for 50 min.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Select the maximum number of cycles where you can a see a clear band without unspecific products.</p></li>
 +
                                                <p class="lead nomargin"><spam class="green">PAUSE POINT</spam>: You can store the DNA at -20ºC </p>
 +
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: If you always have secondary bands, it means that concatemers are forming in your PCR reactions. Consider reducing the template and/or the cycles you are performing.</p>
 +
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: Select the rounds that have the maximum amount of DNA that fits to your needs without secondary bands. Its more important to have the correct purity if you already are going to have the necessary amount. If secondary structures are always forming in your PCR, consider purifying the correct bands from your gel with a kit.</p>
 +
                                               
 +
                                               
 +
                                                <h4 class="tittlelist">Preparative PCR:</h4>
 +
                                                <li class="nomargin"> <p class="lead">Prepare a 200 µL PCR. Use as template 2 µL of the library amplified before and a final primer concentration of 0.8 µM..</p></li>
 +
                                                <li class="nomargin"><p class="lead">Use the same programme but with the cycles chosen before</p></li>
 +
                                                <li class="nomargin"> <p class="lead">Perform a new electrophoresis gel to ensure that the amplification was successful. Purified the DNA and stored it at -20ºC.</p></li>
 +
                                               
 +
                                                <h4>END SELEX CICLE</h4>
 +
                                                <p class="lead">If the cicle is mutiple of 3, do the qPCR (explaind in the next step) to check if the selection is done right.</p>
 +
                                               
 +
                                            </ol>
 +
                                        </div>
 +
                                    </li>
 +
                                    <li>
 +
                                        <div class="tab__title">
 +
                                            <span class="h5">qPCR</span>
 +
                                        </div>
 +
                                        <div class="tab__content">
 +
                                            <h3>qPCR</h3>
 +
                                            <p class="lead nomargin">Bill Of Materials: You could see a complete BoM <a href="https://static.igem.org/mediawiki/2018/b/be/T--Madrid-OLM--Experiments--Protocols_--Aptamers--MaterialqPCR.pdf">here.</a></p>
 +
                                            <p class="lead nomargin">Amount of time: 4 hours.</p>
 +
                                            <p class="lead nomargin">Total  costs: 94 € (price of the genomic service of our university).</p>
 +
                                            <ol class="ourlist">
 +
                                                <li class="nomargin"> <p class="lead">Prepare a 1:10 dilution of each round you want to check.</p></li>
 +
                                                <p class="lead "><spam class="purple">ADVICE</spam>: If one of the rounds is very concentrated, make a 1:10 and a 1:100 dilution of it.</p>
 +
                                                <li><p class="lead">Prepare a 20 µl PCR for each well following these specifications:</p></li>
 +
                                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/9/90/T--Madrid-OLM--Experiments--Protocols_--Aptamers--qPCRtable1.jpg" />
 +
                                                <p class="lead nomargin"><spam class="red">CAUTION</spam>: qPCR are extremely sensible. To avoid pipetting errors, make the mixture, except the template, multiplying x 1,5 your number os samples (including duplicates).</p>
 +
                                                <li class="nomargin"> <p class="lead">Divided the mixture into different tubes. As many as different rounds, you want to check.</p></li>
 +
                                                <li> <p class="lead">Add 2 µl of template for each well into the mixtures. Pipette 20 µl for well.</p></li>
 +
                                                <li class="nomargin"> <p class="lead">The plaque will look like this:</p></li>
 +
                                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/0/01/T--Madrid-OLM--Experiments--Protocols_--Aptamers--qPCRtable2.jpg"/>
 +
                                                <li> <p class="lead">Perform the amplification with the following amplification conditions for 25 cycles. Adjust the annealing temperature according to the primers used, and the hot start to the specifications of your polymerase:</p></li>
 +
                                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/5/58/T--Madrid-OLM--Experiments--Protocols_--Aptamers--qPCRtable3.jpg"/>
 +
                                                <li> <p class="lead">As you perform each round of selection and enrich your library with the bound sequences, the graphic on the PCR would change from reaching a maximum and then decreasing the fluorencend to a sigmoid curve. This means the number of sequences is significally reduced in comparison with the initial library ( 106 different sequences):</p></li>
 +
                                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/d/d7/T--Madrid-OLM--Experiments--Protocols_--Aptamers--qPRCResults.png" style="width:50%;"/>
 +
                                            </ol>           
 +
                                        </div>
 +
                                    </li>
 +
                                    <li>
 +
                                        <div class="tab__title">
 +
                                            <span class="h5">Manual PCI Purification</span>
 +
                                        </div>
 +
                                        <div class="tab__content">
 +
                                            <h3>PCI Extraction and ethanol  precipitation</h3>
 +
                                            <p class="lead nomargin">Bill Of Materials: You could see a complete BoM <a href="https://static.igem.org/mediawiki/2018/a/aa/T--Madrid-OLM--Experiments--Protocols_--Aptamers--MaterialPCI.pdf">here.</a></p>
 +
                                            <p class="lead nomargin">Amount of time: 2 dias</p>
 +
                                            <p class="lead nomargin">Total  costs: 0 €.</p>
 +
                                            <ol class="ourlist">
 +
                                                <h4 class="tittlelist">PCI Extraction:</h4>
 +
                                                <li class="nomargin"> <p class="lead">Add an equal volume of PCI  (phenol: chloroform: isoamyl alcohol 25:24:1) to the digested DNA solution to be purified in a 1.5-ml microcentrifuge tube.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Mix gently for 5 min (rocking platform or vortex) and microcentrifuge 10 min at 10,000 rpm at room temperature.</p></li>
 +
                                                <p class="lead nomargin"><spam class="red">CAUTION</spam>: work with all the reagents in an extration hood.</p>
 +
                                                <li class="nomargin"><p class="lead">Remove the top (aqueous) phase containing the DNA and transfer to a new tube. Repeat steps 1-3.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Add an equal volume of CI ( chloroform: isoamyl alcohol 24:1). Mix gently for 2 min and centrifuge for 1 min at 10,000</p></li>
 +
                                                <li><p class="lead">Remove the top (aqueous) phase containing the DNA and transfer to a new tube.</p></li>
 +
                                               
 +
                                                <h4 class="tittlelist">Ethanol Precipitation:</h4>
 +
                                                <li class="nomargin"> <p class="lead">Add 3 volumes of ice-cold 100 ethanol and 1/10 volumes of 3M Sodium acetate. Invert the tube and place in -20 ºC overnight or in -70ºC for 1 hour.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Spin 30 min in a fixed-angle microcentrifuge at 16 100g and 4ºC. Remove the supernatant.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Add 1 ml of room-temperature 70% ethanol ( if the DNA molecules are very small, less than 200 pb, use 95% ethanol)  and only wash the pellet. microcentrifuge as in step 2.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Spin 10 min at 16 100g and remove the supernatant</p></li>
 +
                                                <li class="nomargin"><p class="lead">Let the pellet air dry for 20 min.</p></li>
 +
                                                <p class="lead "><spam class="red">CAUTION</spam>: Wash the pellet carefully. Invert the tube gently.</p>
 +
                                            </ol>           
 +
                                        </div>
 +
                                    </li>
 +
                                    <li>
 +
                                        <div class="tab__title">
 +
                                            <span class="h5">Quiagen Purification</span>
 +
                                        </div>
 +
                                        <div class="tab__content">
 +
                                            <h3>Quiagen Purification</h3>
 +
                                            <p class="lead nomargin">Bill Of Materials: <a href="http://www.qiagen.com/us/shop/sample-technologies/dna/dna-clean-up/qiaquick-pcr-purification-kit/#orderinginformation"> this link.</a>.</p>
 +
                                            <p class="lead nomargin">Amount of time: 1 hour</p>
 +
                                            <p class="lead nomargin">Total  costs: 100 €.</p>
 +
                                            <ol class="ourlist">
 +
                                                <li class="nomargin"> <p class="lead">Add 5 volumes of Buffer PB to 1 volume of the PCR sample, and then mix. It is not necessary to remove mineral oil or kerosene. For example, add 500 μl of Buffer PB to 100 μl PCR sample (not including oil). </p></li>
 +
                                                <li class="nomargin"><p class="lead">If pH indicator I has been added to Buffer PB, check that the mixture’s color is yellow. If the color of the mixture is orange or violet, add 10 μl of 3 M sodium acetate, pH 5.0, and mix. The color of the mixture will turn yellow.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Place a QIAquick spin column in a provided 2 ml collection tube. </p></li>
 +
                                                <li class="nomargin"><p class="lead">To bind DNA, apply the sample to the QIAquick column and centrifuge for 30–60 s.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Discard flow-through. Place the QIAquick column back into the same tube. Collection tubes are reused to reduce plastic waste.</p></li>
 +
                                                <li class="nomargin"><p class="lead">To wash, add 0.75 ml Buffer PE to the QIAquick column and centrifuge for 30–60 s.</p></li>
 +
                                                <li class="nomargin"><p class="lead">Discard flow-through and place the QIAquick column back into the same tube. Centrifuge the column for an additional 1 min </p></li>
 +
                                                <p class="lead nomargin"><spam class="red">CAUTION</spam>: Residual ethanol from Buffer PE will not be completely removed unless the flow-through is discarded before this a Ensure that the elution buffer is dispensed directly onto the QIAquick membrane for complete elution of bound DNA. dditional centrifugation</p>
 +
                                                <li class="nomargin"><p class="lead">Place QIAquick column in a clean 1.5 ml microcentrifuge tube.</p></li>
 +
                                                <li class="nomargin"><p class="lead">To elute DNA, add 50 μl Buffer EB (10 mM Tris•Cl, pH 8.5) or water (pH 7.0–8.5) to the center of the QIAquick membrane and centrifuge the column for 1 min. Alternatively, for increased DNA concentration, add 30 μl elution buffer to the center of the QIAquick membrane, let the column stand for 4 min, and then centrifuge. </p></li>
 +
                                                <p class="lead "><spam class="red">CAUTION</spam>: Residual ethanol from Buffer PE will not be completely removed unless the flow-through is discarded before this a Ensure that the elution buffer is dispensed directly onto the QIAquick membrane for complete elution of bound DNA. dditional centrifugation</p>
 +
                                               
 +
                                            </ol>
 +
                                        </div>
 +
                                    </li>
 +
                                </ul>
 +
                            </div>
 +
                           
 +
                            <br/><br/>
 +
                            <a class="btn btn--primary-2 type--uppercase inner-link" href="#dicoverymenu">
 +
                                <span class="btn__text">
 +
                                    Back to Dicovery Protocol Index
 +
                                </span>
 +
                            </a>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
Line 73: Line 265:
 
             </section>
 
             </section>
 
              
 
              
             <!--MEETUPS-->
+
           
             <section id="attendance" class="text-center">
+
             <!--characterization-->
 +
             <section id="characterization" class="text-center">
 
                 <div class="container">
 
                 <div class="container">
 
                     <div class="row boxed boxed--border bg--secondary boxed--lg box-shadow">
 
                     <div class="row boxed boxed--border bg--secondary boxed--lg box-shadow">
 
                         <div class="col-md-10 col-lg-10">
 
                         <div class="col-md-10 col-lg-10">
                             <h2>Attendance to Meet Ups</h2>
+
                             <h2>Aptamer Characterization</h2>
                            <p class="lead">The meets ups bring several advantages to the teams. It is one of the simplest ways to reach a greater number of people to whom you can explain your project. And therefore they allow you to know first-hand the projects of the rest of the teams so that you can consult and clarify doubts. These meetings also allow for more related and powerful collaborations thanks to knowing the rest of the teams in person. And last but not least, they allow you to practice exposing your project with a view to improving in the Giant Jamboree.</p>
+
                             <div id="dicoverymenu" class="tabs-container" data-content-align="center">
                            <p class="lead">Our team attended two meet ups that took place in the month of August.</p>
+
                           
+
                             <div id="meetsups" class="tabs-container" data-content-align="center">
+
 
                                 <ul class="tabs">
 
                                 <ul class="tabs">
 
                                     <li class="active">
 
                                     <li class="active">
 
                                         <div class="tab__title">
 
                                         <div class="tab__title">
                                             <span class="h5">Marseille</span>
+
                                             <span class="h5">DIG Labelling</span>
 
                                         </div>
 
                                         </div>
 
                                         <div class="tab__content">
 
                                         <div class="tab__content">
                                             <h3>Mediterranean Meet Up (Marseille)</h3>
+
                                             <h3>DIG Labelling</h3>
                                             <img alt="Image1" src="https://static.igem.org/mediawiki/2018/9/9a/T--Madrid-OLM--Collaboration--Marseille--All.png" style="width:80%;"/>
+
                                             <p class="lead nomargin">Bill Of Materials: You could see a complete BoM <a href="https://static.igem.org/mediawiki/2018/4/46/T--Madrid-OLM--Experiments--Protocols_--Aptamers--MaterialElona.pdf">here.</a></p>
                                             <p class="lead">This meet up took place between Thursday 9 and Friday 10 August in the city of Marseille and was organized by the team of this city, the Aix-Marseille. In it, all the teams from the Mediterranean area were summoned, so they ended up attending both France and Spain. Francisco, Gonzalo and Ivan attended this meet up on behalf of the team.</p>
+
                                            <p class="lead nomargin">Amount of time: 5 hours.</p>
                                             <p class="lead">The event began with a reception in which all teams had their first informal contact. Subsequently, a 5 minutes presentation of each of the projects was organized, summarizing the concept on which the proyect was based, the work carried out and the plans to complete it. After the exhibition, each team answered the questions that could have the jury and the rest of the teams.</p>
+
                                             <p class="lead nomargin">Total  costs: 454,56 € (depending on the PCR reagents and without being sponsored.</p>
                                            <img alt="Image2" src="https://static.igem.org/mediawiki/2018/4/49/T--Madrid-OLM--Collaboration--Marseille--Exp.png" style="width:70%;"/>
+
                                            <p class="lead nomargin"><spam class="red">CAUTION</spam>: You can do the DIG labelling the same day as the day one of the ELONA assay.</p>
                                            <p class="lead">Later they invited us to a joint meal. In the afternoon it was organized a sightseeing tour of the city, but due to inclement weather it had to be suspended, although we could enjoy a pleasant evening of board games and conversations with the rest of the teams. At night a meeting was also organized in a pub to end a day where we had met many new people.</p>
+
                                            <p class="lead "><spam class="purple">ADVICE</spam>: For us, IDT have worked fine and was easy to make the modifications needed.</p>
                                            <p class="lead">The second (and last day) had two interesting activities. The first was the meetings with different experts from the university, which privately asked each team about controversial issues. To see if these issues had been taken into account and the possible solutions and consequences were debated.</p>
+
                                             <ol class="ourlist">
                                            <img alt="Image3" src="https://static.igem.org/mediawiki/2018/2/22/T--Madrid-OLM--Collaboration--Marseille--Experts.png" style="width:70%;"/>
+
                                                <li class="nomargin"> <p class="lead">Order the same primers you use for the PCR amplification but adding in the 5’ extreme the Digoxigenin molecule.</p></li>
                                            <p class="lead">To close the event, a poster presentation session was held, which was very enriching to know how to present our project in Boston..</p>
+
                                                <li> <p class="lead">To determine, the number of cycles needed to label the aptamers, make a PCR reaction mixture of a final volume of 50 µl, for each round to want to check. Add the following reagents to PCR tubes as shown below:</p></li>
                                            <p class="lead">One of the things that were achieved in this meet up was the agreement with the UPF-CRG-Barcelona group to organize an activity in their meet up. Activity that is explained in the following session (and that gave rise to a greater collaboration).</p>
+
                                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/8/8d/T--Madrid-OLM--Experiments--Protocols_--Aptamers--Elonatable1.jpg" style="width:60%;"/>
                                            <img alt="Image4" src="https://static.igem.org/mediawiki/2018/2/2b/T--Madrid-OLM--Collaboration--Marseille--Poster.png" style="width:70%;"/>
+
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: You can use a different tube for each cycle, or a single tube and extract 5 µl for each cycle.</p>
                                             <br/>
+
                                                <p class="lead nomargin"><spam class="red">CAUTION</spam>: Digoxigenin tends to bind with herself and  a band will appear in the negative control. Make a 3 negative control and take them at the cycles 10, 15 and 20. </p>
 +
                                                <li class="nomargin"> <p class="lead">Perform the PCR amplification with the same conditions you use in the <a class="inner-link" href="#Selex">SELEX protocol</a> and choose the PCR samples at the following cycles: 5, 10, 15 and 20.</p></li>
 +
                                                <li class="nomargin"> <p class="lead">Order the same primers you use for the PCR amplification but adding in the 5’ extreme the Digoxigenin molecule.</p></li>
 +
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: You can use a different tube for each cycle, or a single tube and extract 5 µl for each cycle.</p>
 +
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: You can use a different tube for each cycle, or a single tube and extract 5 µl for each cycle.</p>
 +
                                                <li> <p class="lead">Order the same primers you use for the PCR amplification but adding in the 5’ extreme the Digoxigenin molecule.</p></li>
 +
                                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/8/8d/T--Madrid-OLM--Experiments--Protocols_--Aptamers--Elonatable1.jpg" style="width:50%;"/>
 +
                                                <li> <p class="lead">Order the same primers you use for the PCR amplification but adding in the 5’ extreme the Digoxigenin molecule.</p></li> 
 +
                                             </ol>
 
                                         </div>
 
                                         </div>
 
                                     </li>
 
                                     </li>
 
                                     <li>
 
                                     <li>
 
                                         <div class="tab__title">
 
                                         <div class="tab__title">
                                             <span class="h5">Barcelona</span>
+
                                             <span class="h5">Elona</span>
 
                                         </div>
 
                                         </div>
 
                                         <div class="tab__content">
 
                                         <div class="tab__content">
                                             <h3>Spanish Meet Up (Barcelona)</h3>
+
                                             <h3>Elona</h3>
                                             <img alt="Image5" src="https://static.igem.org/mediawiki/2018/6/6d/T--Madrid-OLM--Collaboration--BCN--All.png" style="width:70%;"/>
+
                                             <p class="lead nomargin">Bill Of Materials: You could see a complete BoM <a href="https://static.igem.org/mediawiki/2018/4/46/T--Madrid-OLM--Experiments--Protocols_--Aptamers--MaterialElona.pdf">here.</a></p>
                                             <p class="lead">This meet up took place between Saturday 18 and Monday 20 August in the city of Barcelona and was organized by one of the two teams of this same city, the UPF-CRG-Barcelona. In it, all the teams from Spain were called, which all but the Valencia team attended. To this meet up they were representing the whole team: Laura, Iván and Francisco. The meet up took place in the Biomedical Research Park of Barcelona (PRBB), center where the host team operates and where they started with a welcome activity. This activity consisted of a game where each one of the assistants of each team presented themselves, so that the subsequent environment was much more relaxed.</p>
+
                                            <p class="lead nomargin">Amount of time: 2 days.</p>
                                            <p class="lead">The next activity was the one organized by our team. In this activity we proposed to carry out a collaborative guide in which each group would give the main ideas on how they have solved the main problems that have arisen in iGEM. The structure we proposed was followed. We collected these ideas and wrote a complete guide. We explain this collaboration in a later section of the collaborations. After this, some playful activities were carried out on the beach, including volleyball games. </p>
+
                                             <p class="lead nomargin">Total  costs: 314 € (depending on the PCR reagents and without being sponsored.</p>
                                            <img alt="Image6" src="https://static.igem.org/mediawiki/2018/5/5e/T--Madrid-OLM--Collaboration--BCN--Voley.png" style="width:65%;"/>
+
                                            <ol class="ourlist">
                                            <p class="lead">During the morning of the second day, a more detailed presentation of each team's project was made. There was 30 minutes to expose each project in detail. This activity was very useful because the rest of the teams, besides getting to know the details of each project well, could intervene to give advice on how to make the presentations. Each team took a series of points in which they could be reinforced in the face of the presentation of the Giant Jamboree.</p>
+
                                                <h4 class="tittlelist">DAY 1</h4>
                                            <p class="lead">In the afternoon the time was taken to take a tour in the tourist center of the city and ended up having dinner with a picnic in the Parc Guell. A viewpoint that have views of the entire city at night.</p>
+
                                                <li class="nomargin"> <p class="lead">Coat a NUNC96-well plate with the protein of interest and BSA (negative control) in aptamer buffer or coating buffer with 100 ng/well ( 2ng/μl, 100 μl each well). Incubate overnight  4ºC with agitation (260rpm).</p></li>
                                            <img alt="Image7" src="https://static.igem.org/mediawiki/2018/7/78/T--Madrid-OLM--Collaboration--BCN--Tour.png" style="width:60%;"/>
+
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: The protein will bind to the well surface by itself, so the use of coating solution it is not necessary.</p>
                                            <br/>
+
                                               
                                            <p class="lead">During the morning of the last day, to close the meet up, we were able to attend to some enriching expert talks. They offered us their views on synthetic biology and they explained the works in which they are immersed today.</p>
+
                                                <h4 class="tittlelist">DAY 2</h4>
                                            <img alt="Image8" src="https://static.igem.org/mediawiki/2018/e/e3/T--Madrid-OLM--Collaboration--BCN--Bye.png" style="width:70%;"/>
+
                                                <li class="nomargin"> <p class="lead">Wash 3x200 µl with PBS 1x-Tween 0,1%. Remove the drops after the last wash.</p></li>
                                             <br/>
+
                                                <p class="lead nomargin"><spam class="red">CAUTION</spam>: Be careful to do not touch the well and remove the protein.</p>
 +
                                                <li class="nomargin"> <p class="lead"> Block the plate with 200 µl PBS 1x BSA 5% for 1 hour (260 rpm).</p></li>
 +
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: We recomend to use a multichannel pipette.</p>
 +
                                                <li class="nomargin"> <p class="lead">Structure 2 µg/µl, 1.5 µg/µl and 0.5 µg/µl of the aptamers (the population you want to check as well as the initial population) marked with digoxigenin as you usually do in the buffer you have done the selection.</p></li>
 +
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: You do not need to purify the PCR labelling to perform the assay. As we recommend you it is better to measure directly from the gel.</p>
 +
                                                <li class="nomargin"> <p class="lead">Wash 3x200 µl with PBS 1x tween 0,1%. Remove the drops after the last wash.</p></li>
 +
                                                <p class="lead nomargin"><spam class="red">CAUTION</spam>: Be careful to do not touch the well and remove the protein.</p>
 +
                                                <li class="nomargin"> <p class="lead">Add 100 µl/well of the structured aptamers. Incubated for 1 hour..</p></li>
 +
                                                <li class="nomargin"> <p class="lead">Wash 3x200 µl with PBS 1x BB. Remove the drops after the last wash.</p></li>
 +
                                                <li class="nomargin"> <p class="lead">Add anti-body antidigoxigenin (100µL/well) preparing 1:1000 dilution in Aptamer buffer-BSA 0,2%. Incubate at room temperature for 1h.</p></li>
 +
                                                <p class="lead nomargin"><spam class="red">CAUTION</spam>: We use the selection buffer because it already contains Mg. If you use a different one for the Selex protocol dilution of the aptamer is PBS 1X-Mg 0,2%BSA</p>
 +
                                                <li class="nomargin"> <p class="lead">Wash 3 x 200µL with PBS 1x Tween 0,1%.</p></li>
 +
                                                <li class="nomargin"> <p class="lead">Add 100 µL/wall of ABTS. Read the absorbance (405 nm) every 10 min for 1h.</p></li>
 +
                                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: We recomend you to buy the ABTS than comes diluted and with the oxygene peroxide.</p>
 +
                                                <li> <p class="lead">The plaque would look like this</p></li>
 +
                                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/1/1a/T--Madrid-OLM--Experiments--Protocols_--Aptamers--Elonatable2.jpg" style="width:80%;"/>
 +
                                                <p class="lead"><spam class="red">CAUTION</spam>: Do not add aptamers to the negative control wells.</p>
 +
                                               
 +
                                             </ol>          
 
                                         </div>
 
                                         </div>
 
                                     </li>
 
                                     </li>
 +
                                   
 
                                 </ul>
 
                                 </ul>
 
                             </div>
 
                             </div>
                            <a class="btn btn--primary-2 type--uppercase inner-link" href="#meetsups">
 
                                <span class="btn__text">
 
                                    Back to Meet up Index
 
                                </span>
 
                            </a>
 
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
Line 137: Line 349:
 
              
 
              
 
              
 
              
             <!--MADRID-->
+
             <!--Electrode-->
             <section id="Organization" class="text-center">
+
             <section id="Electrode" class="text-center">
 
                 <div class="container">
 
                 <div class="container">
 
                     <div class="row boxed boxed--border bg--secondary boxed--lg box-shadow">
 
                     <div class="row boxed boxed--border bg--secondary boxed--lg box-shadow">
 
                         <div class="col-md-10 col-lg-10">
 
                         <div class="col-md-10 col-lg-10">
                             <h2>Organization of a Meet Up: Another European Meet Up</h2>
+
                             <h2>Aptamer electrode</h2>
                             <h5>Reason</h5>
+
                             <h3>Sinthesis of the electrode</h3>
                             <p class="lead">After attending two meet ups we realized that these meetings are very enriching experiences in preparation for the Giant Jamboree. One of the main reasons for these meet ups is to get to know and know the project of other teams. Other reason is that its also serves to practice the presentations of the project and its results. And finally serve to open the network of contacts beyond the contest itself.</p>
+
                             <p class="lead nomargin">Bill Of Materials: You could see a complete BoM <a href="https://static.igem.org/mediawiki/2018/a/a1/T--Madrid-OLM--Experiments--Protocols_--Aptamers--Materialsynthethiselectrode.pdf">here</a>.</p>
                             <p class="lead">We realized that the events to which more teams come are usually the first ones to be organized, and in these although if they serve to obtain collaborations, do not fulfill so much the function of practicing to present the results of your project due to at the beginning of the summer there are no results.</p>
+
                             <p class="lead nomargin">Amount of time: 2 day</p>
                             <p class="lead">This year the European meet up was on July 20. Date in which novice teams, without sufficient contacts do not yet know how to deal with these events and do not have the necessary funds to attend. And teams with more experience do not yet have conclusive results. With this context we proposed this ambitious project: Make another European meet up. We invited all the teams of the continent in mid-September. A date that was supposed to be the best for the organization of new teams and with the possibility of simulating the final event.</p>
+
                             <p class="lead ">Total  costs: 220€ (with sponsors).</p>
                              
+
                             <ol class="ourlist">
                            <h5>Event</h5>
+
                                <h4 class="tittlelist">Selecting the electrode</h4>
                            <p class="lead">The event was organized between September 14 and 16. Although this event was given as much publicity as possible and contact was made with all possible teams in Europe, attendance was low due to several factors:</p>
+
                                <p class="lead nomargin">There are so many scaffolds to join the Aptamers (or the DNA). Our choice was based on the kind of measuring hardware that we have used, a potentiostat. For this variety of measuring system you need a 3-electrodes system (working, reference and counter electrodes). The other parameters of the electrode was choose as follows:</p>
                            <ul>
+
                                 <li> <p class="lead">We choose Dropsens as our provider, because they are one of the standards in the field, and they are relatively near to our laboratory.</p></li>
                                 <li>
+
                                 <img alt="Image1" src="https://static.igem.org/mediawiki/2018/8/8f/T--Madrid-OLM--Experiments--Protocols_--Aptamers--Dropsens.jpg" style="width:30%;"/>  
                                    <p class="lead"><b>- Spain is geographically at one end of Europe and travel is expensive.</b></p>      
+
                                 <li class="nomargin"><p class="lead">The material of the working electrode was choose as carbon, modified to include gold nanoparticles. The carbon have better electrochemical window than gold or silver (check <a href="http://www.researchgate.net/post/the_advantage_of_glassy_carbon_electrodein_comparsion_with_Au_electrode">this</a> post for more information) and gold are the ideal substrate to join DNA (It only have to be thiolated).</p></li>
                                 </li>
+
                               
                                 <li>
+
                                 <h4 class="tittlelist">Ordering the DNA</h4>
                                    <p class="lead"><b>- The teams were short of funds and were saving for the trip to Boston.</b></p>
+
                                <p class="lead nomargin">To run the first Proof of Concept  we ordered a commercial Thrombin aptamer. Some tips have been took into account for the aptamer adaptation to electrode binding:</p>
                                </li>
+
                                <li class="nomargin"> <p class="lead">Between the DNA and its thiolation in its 5’, we have include a 6 carbon chain after the thiol modification and 15 thymes before the aptamer sequence. The purpose of this modifications was to separate the aptamer from the electrode surface aiming to ensure enough conformational flexibility of the molecule.</p></li>
                                 <li>
+
                                 <p class="lead nomargin"><spam class="purple">ADVICE</spam>: The IDT code for this modification is  /5ThioMC6-D/ </p>
                                    <p class="lead"><b>- The event was announced at the beginning of September, many teams did not have room to maneuver in their organization to attend.</b></p>    
+
                                <li class="nomargin"><p class="lead">We have order the aptamers to Integrated DNA Technologies as they are one of the competition sponsors.</p></li>
                                 </li>
+
                                <p class="lead nomargin"><spam class="red">CAUTION</spam>: As the thiolated ends are considerably unstable, they are shipped as they oxidized form. To treat your electrodes with this aptamers you need to reduce them with DTT or TCEP. You could find a complete protocol of this process <a href="http://sfvideo.blob.core.windows.net/sitefinity/docs/default-source/protocol/reduction-protocol-for-thiol-modified-oligonucleotides.pdf">here.</a></p>
                            </ul>
+
                               
                            <br/>
+
                                <h4 class="tittlelist">Aptamer Bounding</h4>
                            <p class="lead">Despite these inconveniences we had assistance from several participants of some teams (all of them came from within the Spanish territory thanks to the facilities for transport). Although there was an extensive program of activities, these had to be adjusted and reorganized so that the maximum number of attendees could enjoy them.</p>
+
                                <li class="nomargin"> <p class="lead">[Optional] Depending on your electrodes, it needs to be pre-treated to ensure the correct aptamer binding. For this purpose pipette 50 uL of H2SO4  0.5M until the electrode are covered and perform 10 cyclic voltammograms from 0V to 1.25V at 100 mV/s of scan rate.</p></li>
                       
+
                                <p class="lead nomargin"><spam class="purple">ADVICE</spam>: TWith Dropsens electrodes there is no need to perform this step.</p>
                            <h5>Activities</h5>  
+
                                <li class="nomargin"><p class="lead">Wash the electrodes three times with deionized water and let them dry under an extraction hood air flow.</p></li>
                            <p class="lead">The event began on Friday the 14th in the afternoon with the main course. In it, after the reception of the attendees we gave way to a series of very interesting expert presentations. We were able to count on the attendance of the following personalities</p>
+
                                <li class="nomargin"><p class="lead">Follow the protocol to structure the aptamers in their individual binding buffers. If you have follow our SELEX protocol, check the buffers and their own structuration steps in this protocol. Make sure that you have enough concentration for the next step.</p></li>
                            <p class="lead"><u><b>Victor de Lorenzo</b></u></p>
+
                                <li class="nomargin"><p class="lead">Drop 10 uL of the 5uM solution of aptamer in its own Binding Buffer (if you have selected the aptamer with our protocol check the SELEX protocol) above the working electrode.</p></li>
                            <p class="lead">He is one of the Spanish most relevant researchers in the Synthetic Biology field. He work in the National Biotechnology Center (CNB) a part of the Superior Council of Scientific Investigations (CSIC). His laboratory is specialized in solving environmental issues using genetically engineered Pseudomonas putida. He gave us an interesting talk about <i>"Synthetic Biology in the rescue of the planet Earth"</i>.</p>
+
                                <li class="nomargin"><p class="lead">Incubate overnight in an humidity chamber.Incubate overnight in an humidity chamber.</p></li>
                            <img alt="Image5" src="https://static.igem.org/mediawiki/2018/e/ee/T--Madrid-OLM--Collaboration--Madrid--Conference1.png" style="width:70%;"/>
+
                                <p class="lead"><spam class="green">PAUSE POINT</spam>: Let the electrodes incubating overnight</p>
                           
+
                                <li class="nomargin"><p class="lead">Wash the electrodes three times with deionized water and let them dry under an extraction hood air flow.</p></li>
                            <p class="lead"><u><b>Saul Ares</b></u></p>
+
                                <li class="nomargin"><p class="lead">To remove the excess of DNA, treat the electrodes with 10 uL of β-Mercaptoethanol for 50 minutes in a humidity chamber. </p></li>
                            <p class="lead">He is a researcher of the CNB too. His work is central in the mathematical modeling of Synthetic Biology systems. He has also collaborated with previous iGEM teams. His presentation talked about <i>"How do cyanobacteria count to ten"</i>.</p>
+
                                <li class="nomargin"><p class="lead">Wash the electrodes three times with deionized water and let them dry under an extraction hood air flow.</p></li>
                            <img alt="Image5" src="https://static.igem.org/mediawiki/2018/7/7e/T--Madrid-OLM--Collaboration--Madrid--Conference2.png" style="width:70%;"/>
+
                                <p class="lead nomargin"><spam class="red">CAUTION</spam>: When incubating the different solutions and buffers with the electrode, do NOT let the solution evaporate. Be sure of making the step in a humidified chamber.</p>
                           
+
                               
                            <p class="lead"><u><b>Krzysztof Wabnik</b></u></p>
+
                                <h4 class="tittlelist">Electrodes testing with cyclic voltammetry</h4>
                            <p class="lead">He is a Young Investigator Researcher of the Center for Biotechnology and Plant Genomics (CBGP) at the Polytechnic University of Madrid (UPM). The group he is leading uses multilevel computer model simulations, synthetic biology experiments and microfluidics. The name of his presentation was: <i>"Combining computational and synthetic biology approaches to understand the dynamics of plant hormone signaling circuits"</i>.</p>
+
                                <li class="nomargin"> <p class="lead">First of all you must calibrate the ideal concentration of the electrode donor solution. For this purpose ferricyanide redox couple  (K3Fe(CN)6and K4Fe(CN)6) was used above a raw electrode without aptamer. After our experiments the optimal concentration was found to be 5mM of each chemical in a 0.1 KCl solution.</p></li>
                            <img alt="Image5" src="https://static.igem.org/mediawiki/2018/2/2d/T--Madrid-OLM--Collaboration--Madrid--Conference3.png" style="width:70%;"/>
+
                                <p class="lead"><spam class="purple">ADVICE</spam>: In our experience, this concentration could be different depending on things like the quality of your reactives or your electrodes. We encourage you to adjust this value experimentally making some dilutions (0.5X, 2X…).</p>
                           
+
                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/a/a3/T--Madrid-OLM--Experiments--Protocols_--Aptamers--Maquina.jpg" style="width:30%;"/>
                            <p class="lead">Despite these inconveniences we had assistance from several participants of some teams (all of them came from within the Spanish territory thanks to the facilities for transport). Although there was an extensive program of activities, these had to be adjusted and reorganized so that the maximum number of attendees could enjoy them.</p>
+
                                <li class="nomargin"><p class="lead">Cover the electrode with a ferricyanide droplet and connect it to the potentiostat.</p></li>
                            <img alt="Image5" src="https://static.igem.org/mediawiki/2018/4/4a/T--Madrid-OLM--Collaboration--Madrid--Conference4.png" style="width:70%;"/>
+
                                <li class="nomargin"><p class="lead">Run a preliminar cyclic voltammetry test with a stardart parameters. The ones that have fits better with our hardware <a href="http://iorodeo.com/products/potentiostat-shield">(Rodeostat)</a> was one cycle from -0.3V to 0.3V, with a current limit of 1000 uA, a sample rate of 100 Hz and a scan rate of 0.05 mV/s.</p></li>
                            <p class="lead">After the talks a social event was held in which the attending teams could relax having dinner in the center of Madrid with one of the most typical activities here: go out for tapas.</p>
+
                                <li><p class="lead">After the test have finished, adjust the parameters (voltage range and current limit) to fit the complete curve in your range. A typical Cyclic Voltammetry curve may have a shape similar to a duck.</p></li>
                            <p class="lead">The second day was inaugurated with a visit to the university to show the facilities where our team works and it was explained which procedures are used in each of the sections that were visited.</p>
+
                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/1/16/T--Madrid-OLM--Experiments--Protocols_--Aptamers--Duck1.jpg" style="width:50%;"/>
                            <p class="lead">Subsequently, the presentations of the projects were made. A simulation of the presentation was carried out as it should be done in Boston, to learn how to take the time and try to correct the excesses or lack of time in each section that was exposed.</p>
+
                                <li><p class="lead">Once you have calibrated the test for raw electrode is time to compare the results between itself and the electrode with aptamer bonded. If your binding process have succeed you must find a decreasement between the current peak of the electrode with aptamers compared to the raw one. This decreasement is proportional to the quantity of aftamer bonded to the electrode surface as they are obstructing the electrons flow through the electrode surface.</p></li>
                            <p class="lead">In the afternoon there was a tour around Madrid, where the most iconic places of the city were shown. And although there were activities scheduled for the next day, this was the activity that closed the meet up, since the attending teams had organized to return to their cities after this tour.</p>
+
                                <img alt="Image1" src="https://static.igem.org/mediawiki/2018/5/58/T--Madrid-OLM--Experiments--Protocols_--Aptamers--Duck2.jpg" style="width:50%;"/>
                            <img alt="Image5" src="https://static.igem.org/mediawiki/2018/3/30/T--Madrid-OLM--Collaboration--Madrid--Tour.png" style="width:70%;"/>
+
                                <li class="nomargin"><p class="lead">To calibrate the minimum quantity of aptamer that you need to achieve your detection limits, you may carry out the same experiment but with different concentrations of the aptamer.  At the end of this experiment you will be able to correlate the quantity of the aptamer bonded to your electrode with the cyclic voltammetry peak.</p></li>
                            <h5>Conclusion</h5>
+
                                <li class="nomargin"><p class="lead">Now your electrode is prepared to test it with your protein. You may set an incubation time and temperature depending on the individual interaction between each aptamer and protein. There is no protocol here. This will be a part of your individual results and its your work from now to adapt this protocol to your individual case. If your experiment succeed you will see a decreasement of current in the electrode with higher concentrations of aptamers. To see the outcome of our experiments check the results in the device section.</p></li>
                            <p class="lead">It was an event that few people could attend, due to the conditions explained above, but from which the attendees took much advantage. Holding such an event in September could be much more crowded if it was announced from the beginning of the summer and allowed the rest of the teams to organize around it. As it provides a series of very useful tools for the presentation of Boston.</p>
+
                               
                              
+
                                <h4 class="tittlelist">Troubleshooting</h4>
 +
                                <li class="nomargin"> <p class="lead">If after the measurement you can’t see any kind of signal or your noise is too high compared to the signal the problem may be caused by different sources. You should analyze the following things:</p></li>
 +
                                <ol>
 +
                                    <li class="nomargin"> <p class="lead">Check if you don’t have enough current (current under 30 uA in Rodeostat) or  you have current but so much noise. In the first case you should check the wiring because your circuit isn’t close. In the second case you should check possible noise sources near your system (like magnets or fluorescent lights).</p></li>
 +
                                    <p class="lead nomargin"><spam class="purple">ADVICE</spam>: We have faced this kind of issue when we have connected the electrodes through alligator clips. The connection was not stable enough and the system have low current and too much noise.  The solution was substituting the clips with oscilloscope probes. You could also solder the electrode to copper wires or consider to buy a commercial electrode adaptor. </p>
 +
                                    <li class="nomargin"><p class="lead">Check if in the electrode are appearing air bubbles when you run the measurement. This is a symptom of a wrong electrode connection. Check if you haven’t switch the connections of reference and counter electrode.</p></li>
 +
                                    <li class="nomargin"><p class="lead">If no current decreasing have achieve in the electrode with aptamers compared to the raw electrode check if you have followed correctly reduced the aptamers before following the binding protocol. Also check the concentration of aptamers that you have cast above the electrode.</p></li>
 +
                                </ol>
 +
                             </ol>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
Line 193: Line 413:
 
                 </div>
 
                 </div>
 
                 <!--end of container-->
 
                 <!--end of container-->
             </section>        
+
             </section>  
 
         </div>
 
         </div>
 
         <!--<div class="loader"></div>-->
 
         <!--<div class="loader"></div>-->

Latest revision as of 03:36, 18 October 2018

Madrid-OLM

Aptamer`s Protocols

Aptamer's Protocols

Aptamers offer an endless number of possibilities, however, in iGEM hasn't settled as a main tool. So far, the cost and difficulty to work with them have been the bottleneck.

We offer the workflow that we had been successful and relatively cheaper than the others techniques

Aptamer Discovery

  • SELEX

    SELEX

    Bill Of Materials: You could see a complete BoM here.

    Amount of time: 1 day

    Total costs: 40 € (with iGEM sponsor).

      DIY nitrocellulose column manufacture

    1. Download the columns of the stl files from our github repository.

    2. 3D print the stl models in PETG. For more information about the reasons why we choose this material see the results page.

    3. ADVICE: We have found the following parameters as the optimal ones printing with a Prusa i3 machine:

      -Filaments diameter of 1.75mm

      -Nozzle at 230ºC. Base 80ºC with Nelly hairspray. (CAUTION: The brand of the headspray must be Nelly.

      Image1
    4. Separate the 3D printed structures from the printer base. Remove the excess of printed material.

    5. Treat the columns with dichloromethane until the surface gets smooth.

    6. Image1

      ADVICE: For us it have worked putting the columns in glass jar, above a cardboard pedestal. Then cover the base of the jar with dichloromethane without touching the 3D printed files. Put the jard on the 3D printed hotbed at 80ºC for 20 minutes.

    7. Wash the columns three times in deionized water to clean them from dicloromethane.

    8. Put the columns in sterilizing solution (0,1N NaOH, 1% (m/v) EDTA) to inactivate DNAses and remove other pollutants. Keep overnight at room temperature.

    9. Keep in milliQ water until its use.

    10. Designing and ordering the initial library

    11. Design your library as a DNA of 30-40 random nucleotides flanked by constant extremes of 12-18 nucleotides. Use HPLC purification. Also order the primers for this constant edges.

    12. ADVICE: For us, IDT have worked well as a DNA provider. They are also iGEM sponsor at our year, so this libraries could be free for igem teams.

      ADVICE: The following sequence have fit well to us:

      Image1

      START SELEX CICLE

      Prepare the library pool

    13. Resuspend 2 nmol de la library pool on 200 µl of Binding Buffer (Tris-HCl PH= 7,4 20 mM; MgCl21mM; NaCl 150mM; KCl 5 mM).

    14. Denatured the library by heating it at 90ºC for 10 min and immediately cold it on ice for another 10 min.

    15. Wash in distilled water and mount the nitrocellulose column by cutting a small square of the membrane and then pre-wet it with the BB.

    16. Image1

      CAUTION: The colums break easily, so do not aplyy too much force on them.

    17. To get rid of the DNA that unespecifically binds to the system, apply the library through a nitrocellulose membrane and centrifuge 1 min at 8000 rpm. Quantify the DNA that does not bind unspeficically and note it as the initial DNA.

    18. Protein-Aptamer incubation

    19. Incubate the flowthrough with the protein of interest during 1 hour.

    20. Apply the DNA to a new nitrocellulose membrane as in step 11.

    21. Wash the membrane four times with 300 µl of BB, like on step 11.

    22. Recover the membrane and transfer it to a new Eppendorf tube.

    23. CAUTION: Do not let the membrane dry, as it becomes fragile and the mollecules inside it could be damage.

      Denatured the protein and elute the selected DNAs

    24. Add 400µL of FES and 500 µL of phenol and mix in a thermomixer/ vortex at 1.400 rpm for 10 min.

    25. Transfer the liquid to a new tube and repeat step 8 but this time with 200 µl of each regeant.

    26. Mix the two samples and add 200 µl of Milli-Q wáter to allow the phase separation and centrifuge 10 min at 16100 g.

    27. Transfer the aqueous phase (upper) to a new 2 ml tube and made a PCI or Qiagen (link) columns to extract the DNA. Resuspend the purified DNA in 30 ul of Milli-Q water.

    28. ADVICE: Qiagen colums recover more DNA and also reduced the time of the purification, but are more expensive.

      PAUSE POINT:You can leave the PCI precipitation overnight (see PCI protocol), or the Qiagen Purified DNA in the fridge at 4ºC.

      Library amplification

    29. Prepare the PCR mixture for a final volume of 50 µl per reaction and a final primer concentration of 0,8 µM. For the first round use all the template recover after the incubation. For the next rounds use 20 ul of template and adjust the rest according to the reagent you use.

    30. Perform the amplification with the following amplification conditions. Adjust the annealing temperature according to the primers used, and the hotstart to the specifications of your polymerase:

    31. Image1
    32. Prepare an agarose gel at 3%. Load the samples and perform the electrophoresis at 90V for 50 min.

    33. ADVICE: We strongly recommend to quantify the DNA by gel molecular mass marker instead other methods like nanodrop. Add in this step to the first line of your gel if you decide to use this method.

      ADVICE: For revealing the gel bands, GelRed have fits correctly to our purpose. We have put the GelRed before the gel polymerization step inside the mixture, following the product specifications.

    34. Remove the gel and observe the bands under UV light.

    35. It is needed at least 1 ug to continue with the next round. If it not accomplish, a further amplification is needed (continue reading). If you succeed amplifying with 10 cyclis this amount of DNA, skip the next steps and continue repeating this steps to do the next SELEX round.

    36. PAUSE POINT:The library can be stored at -20ºC

      CAUTION: We strongly recommend you to keep a little portion of each round of selection as a backup plan in case that you lost your DNA in further rounds. Keep in mind this when you amplify your DNA, because you will need more that the 1ug of DNA used in the next SELEX round.

      Determination the optimal number of amplification cycles:

    37. The total PCR reaction mixture volume for each tube is 50 µl using as template 0,5 µl of the library amplified before, for each tube, and a final primers concentration of 0.8µM. Choose PCR samples at the following cycles:5, 10, 15, 20, 25. Also a negative control tube at the twentieth cycle.

    38. Perform the PCR amplification with the same condition as step 22 and take the samples at the specified cycles

    39. Prepared an agarose gel at 3%.

    40. Perform the electrophoresis gel at 90V for 50 min.

    41. Select the maximum number of cycles where you can a see a clear band without unspecific products.

    42. PAUSE POINT: You can store the DNA at -20ºC

      ADVICE: If you always have secondary bands, it means that concatemers are forming in your PCR reactions. Consider reducing the template and/or the cycles you are performing.

      ADVICE: Select the rounds that have the maximum amount of DNA that fits to your needs without secondary bands. Its more important to have the correct purity if you already are going to have the necessary amount. If secondary structures are always forming in your PCR, consider purifying the correct bands from your gel with a kit.

      Preparative PCR:

    43. Prepare a 200 µL PCR. Use as template 2 µL of the library amplified before and a final primer concentration of 0.8 µM..

    44. Use the same programme but with the cycles chosen before

    45. Perform a new electrophoresis gel to ensure that the amplification was successful. Purified the DNA and stored it at -20ºC.

    46. END SELEX CICLE

      If the cicle is mutiple of 3, do the qPCR (explaind in the next step) to check if the selection is done right.

  • qPCR

    qPCR

    Bill Of Materials: You could see a complete BoM here.

    Amount of time: 4 hours.

    Total costs: 94 € (price of the genomic service of our university).

    1. Prepare a 1:10 dilution of each round you want to check.

    2. ADVICE: If one of the rounds is very concentrated, make a 1:10 and a 1:100 dilution of it.

    3. Prepare a 20 µl PCR for each well following these specifications:

    4. Image1

      CAUTION: qPCR are extremely sensible. To avoid pipetting errors, make the mixture, except the template, multiplying x 1,5 your number os samples (including duplicates).

    5. Divided the mixture into different tubes. As many as different rounds, you want to check.

    6. Add 2 µl of template for each well into the mixtures. Pipette 20 µl for well.

    7. The plaque will look like this:

    8. Image1
    9. Perform the amplification with the following amplification conditions for 25 cycles. Adjust the annealing temperature according to the primers used, and the hot start to the specifications of your polymerase:

    10. Image1
    11. As you perform each round of selection and enrich your library with the bound sequences, the graphic on the PCR would change from reaching a maximum and then decreasing the fluorencend to a sigmoid curve. This means the number of sequences is significally reduced in comparison with the initial library ( 106 different sequences):

    12. Image1
  • Manual PCI Purification

    PCI Extraction and ethanol precipitation

    Bill Of Materials: You could see a complete BoM here.

    Amount of time: 2 dias

    Total costs: 0 €.

      PCI Extraction:

    1. Add an equal volume of PCI (phenol: chloroform: isoamyl alcohol 25:24:1) to the digested DNA solution to be purified in a 1.5-ml microcentrifuge tube.

    2. Mix gently for 5 min (rocking platform or vortex) and microcentrifuge 10 min at 10,000 rpm at room temperature.

    3. CAUTION: work with all the reagents in an extration hood.

    4. Remove the top (aqueous) phase containing the DNA and transfer to a new tube. Repeat steps 1-3.

    5. Add an equal volume of CI ( chloroform: isoamyl alcohol 24:1). Mix gently for 2 min and centrifuge for 1 min at 10,000

    6. Remove the top (aqueous) phase containing the DNA and transfer to a new tube.

    7. Ethanol Precipitation:

    8. Add 3 volumes of ice-cold 100 ethanol and 1/10 volumes of 3M Sodium acetate. Invert the tube and place in -20 ºC overnight or in -70ºC for 1 hour.

    9. Spin 30 min in a fixed-angle microcentrifuge at 16 100g and 4ºC. Remove the supernatant.

    10. Add 1 ml of room-temperature 70% ethanol ( if the DNA molecules are very small, less than 200 pb, use 95% ethanol) and only wash the pellet. microcentrifuge as in step 2.

    11. Spin 10 min at 16 100g and remove the supernatant

    12. Let the pellet air dry for 20 min.

    13. CAUTION: Wash the pellet carefully. Invert the tube gently.

  • Quiagen Purification

    Quiagen Purification

    Bill Of Materials: this link..

    Amount of time: 1 hour

    Total costs: 100 €.

    1. Add 5 volumes of Buffer PB to 1 volume of the PCR sample, and then mix. It is not necessary to remove mineral oil or kerosene. For example, add 500 μl of Buffer PB to 100 μl PCR sample (not including oil).

    2. If pH indicator I has been added to Buffer PB, check that the mixture’s color is yellow. If the color of the mixture is orange or violet, add 10 μl of 3 M sodium acetate, pH 5.0, and mix. The color of the mixture will turn yellow.

    3. Place a QIAquick spin column in a provided 2 ml collection tube.

    4. To bind DNA, apply the sample to the QIAquick column and centrifuge for 30–60 s.

    5. Discard flow-through. Place the QIAquick column back into the same tube. Collection tubes are reused to reduce plastic waste.

    6. To wash, add 0.75 ml Buffer PE to the QIAquick column and centrifuge for 30–60 s.

    7. Discard flow-through and place the QIAquick column back into the same tube. Centrifuge the column for an additional 1 min

    8. CAUTION: Residual ethanol from Buffer PE will not be completely removed unless the flow-through is discarded before this a Ensure that the elution buffer is dispensed directly onto the QIAquick membrane for complete elution of bound DNA. dditional centrifugation

    9. Place QIAquick column in a clean 1.5 ml microcentrifuge tube.

    10. To elute DNA, add 50 μl Buffer EB (10 mM Tris•Cl, pH 8.5) or water (pH 7.0–8.5) to the center of the QIAquick membrane and centrifuge the column for 1 min. Alternatively, for increased DNA concentration, add 30 μl elution buffer to the center of the QIAquick membrane, let the column stand for 4 min, and then centrifuge.

    11. CAUTION: Residual ethanol from Buffer PE will not be completely removed unless the flow-through is discarded before this a Ensure that the elution buffer is dispensed directly onto the QIAquick membrane for complete elution of bound DNA. dditional centrifugation



Back to Dicovery Protocol Index

Aptamer Characterization

  • DIG Labelling

    DIG Labelling

    Bill Of Materials: You could see a complete BoM here.

    Amount of time: 5 hours.

    Total costs: 454,56 € (depending on the PCR reagents and without being sponsored.

    CAUTION: You can do the DIG labelling the same day as the day one of the ELONA assay.

    ADVICE: For us, IDT have worked fine and was easy to make the modifications needed.

    1. Order the same primers you use for the PCR amplification but adding in the 5’ extreme the Digoxigenin molecule.

    2. To determine, the number of cycles needed to label the aptamers, make a PCR reaction mixture of a final volume of 50 µl, for each round to want to check. Add the following reagents to PCR tubes as shown below:

    3. Image1

      ADVICE: You can use a different tube for each cycle, or a single tube and extract 5 µl for each cycle.

      CAUTION: Digoxigenin tends to bind with herself and a band will appear in the negative control. Make a 3 negative control and take them at the cycles 10, 15 and 20.

    4. Perform the PCR amplification with the same conditions you use in the SELEX protocol and choose the PCR samples at the following cycles: 5, 10, 15 and 20.

    5. Order the same primers you use for the PCR amplification but adding in the 5’ extreme the Digoxigenin molecule.

    6. ADVICE: You can use a different tube for each cycle, or a single tube and extract 5 µl for each cycle.

      ADVICE: You can use a different tube for each cycle, or a single tube and extract 5 µl for each cycle.

    7. Order the same primers you use for the PCR amplification but adding in the 5’ extreme the Digoxigenin molecule.

    8. Image1
    9. Order the same primers you use for the PCR amplification but adding in the 5’ extreme the Digoxigenin molecule.

  • Elona

    Elona

    Bill Of Materials: You could see a complete BoM here.

    Amount of time: 2 days.

    Total costs: 314 € (depending on the PCR reagents and without being sponsored.

      DAY 1

    1. Coat a NUNC96-well plate with the protein of interest and BSA (negative control) in aptamer buffer or coating buffer with 100 ng/well ( 2ng/μl, 100 μl each well). Incubate overnight 4ºC with agitation (260rpm).

    2. ADVICE: The protein will bind to the well surface by itself, so the use of coating solution it is not necessary.

      DAY 2

    3. Wash 3x200 µl with PBS 1x-Tween 0,1%. Remove the drops after the last wash.

    4. CAUTION: Be careful to do not touch the well and remove the protein.

    5. Block the plate with 200 µl PBS 1x BSA 5% for 1 hour (260 rpm).

    6. ADVICE: We recomend to use a multichannel pipette.

    7. Structure 2 µg/µl, 1.5 µg/µl and 0.5 µg/µl of the aptamers (the population you want to check as well as the initial population) marked with digoxigenin as you usually do in the buffer you have done the selection.

    8. ADVICE: You do not need to purify the PCR labelling to perform the assay. As we recommend you it is better to measure directly from the gel.

    9. Wash 3x200 µl with PBS 1x tween 0,1%. Remove the drops after the last wash.

    10. CAUTION: Be careful to do not touch the well and remove the protein.

    11. Add 100 µl/well of the structured aptamers. Incubated for 1 hour..

    12. Wash 3x200 µl with PBS 1x BB. Remove the drops after the last wash.

    13. Add anti-body antidigoxigenin (100µL/well) preparing 1:1000 dilution in Aptamer buffer-BSA 0,2%. Incubate at room temperature for 1h.

    14. CAUTION: We use the selection buffer because it already contains Mg. If you use a different one for the Selex protocol dilution of the aptamer is PBS 1X-Mg 0,2%BSA

    15. Wash 3 x 200µL with PBS 1x Tween 0,1%.

    16. Add 100 µL/wall of ABTS. Read the absorbance (405 nm) every 10 min for 1h.

    17. ADVICE: We recomend you to buy the ABTS than comes diluted and with the oxygene peroxide.

    18. The plaque would look like this

    19. Image1

      CAUTION: Do not add aptamers to the negative control wells.

Aptamer electrode

Sinthesis of the electrode

Bill Of Materials: You could see a complete BoM here.

Amount of time: 2 day

Total costs: 220€ (with sponsors).

    Selecting the electrode

    There are so many scaffolds to join the Aptamers (or the DNA). Our choice was based on the kind of measuring hardware that we have used, a potentiostat. For this variety of measuring system you need a 3-electrodes system (working, reference and counter electrodes). The other parameters of the electrode was choose as follows:

  1. We choose Dropsens as our provider, because they are one of the standards in the field, and they are relatively near to our laboratory.

  2. Image1
  3. The material of the working electrode was choose as carbon, modified to include gold nanoparticles. The carbon have better electrochemical window than gold or silver (check this post for more information) and gold are the ideal substrate to join DNA (It only have to be thiolated).

  4. Ordering the DNA

    To run the first Proof of Concept we ordered a commercial Thrombin aptamer. Some tips have been took into account for the aptamer adaptation to electrode binding:

  5. Between the DNA and its thiolation in its 5’, we have include a 6 carbon chain after the thiol modification and 15 thymes before the aptamer sequence. The purpose of this modifications was to separate the aptamer from the electrode surface aiming to ensure enough conformational flexibility of the molecule.

  6. ADVICE: The IDT code for this modification is /5ThioMC6-D/

  7. We have order the aptamers to Integrated DNA Technologies as they are one of the competition sponsors.

  8. CAUTION: As the thiolated ends are considerably unstable, they are shipped as they oxidized form. To treat your electrodes with this aptamers you need to reduce them with DTT or TCEP. You could find a complete protocol of this process here.

    Aptamer Bounding

  9. [Optional] Depending on your electrodes, it needs to be pre-treated to ensure the correct aptamer binding. For this purpose pipette 50 uL of H2SO4 0.5M until the electrode are covered and perform 10 cyclic voltammograms from 0V to 1.25V at 100 mV/s of scan rate.

  10. ADVICE: TWith Dropsens electrodes there is no need to perform this step.

  11. Wash the electrodes three times with deionized water and let them dry under an extraction hood air flow.

  12. Follow the protocol to structure the aptamers in their individual binding buffers. If you have follow our SELEX protocol, check the buffers and their own structuration steps in this protocol. Make sure that you have enough concentration for the next step.

  13. Drop 10 uL of the 5uM solution of aptamer in its own Binding Buffer (if you have selected the aptamer with our protocol check the SELEX protocol) above the working electrode.

  14. Incubate overnight in an humidity chamber.Incubate overnight in an humidity chamber.

  15. PAUSE POINT: Let the electrodes incubating overnight

  16. Wash the electrodes three times with deionized water and let them dry under an extraction hood air flow.

  17. To remove the excess of DNA, treat the electrodes with 10 uL of β-Mercaptoethanol for 50 minutes in a humidity chamber.

  18. Wash the electrodes three times with deionized water and let them dry under an extraction hood air flow.

  19. CAUTION: When incubating the different solutions and buffers with the electrode, do NOT let the solution evaporate. Be sure of making the step in a humidified chamber.

    Electrodes testing with cyclic voltammetry

  20. First of all you must calibrate the ideal concentration of the electrode donor solution. For this purpose ferricyanide redox couple (K3Fe(CN)6and K4Fe(CN)6) was used above a raw electrode without aptamer. After our experiments the optimal concentration was found to be 5mM of each chemical in a 0.1 KCl solution.

  21. ADVICE: In our experience, this concentration could be different depending on things like the quality of your reactives or your electrodes. We encourage you to adjust this value experimentally making some dilutions (0.5X, 2X…).

    Image1
  22. Cover the electrode with a ferricyanide droplet and connect it to the potentiostat.

  23. Run a preliminar cyclic voltammetry test with a stardart parameters. The ones that have fits better with our hardware (Rodeostat) was one cycle from -0.3V to 0.3V, with a current limit of 1000 uA, a sample rate of 100 Hz and a scan rate of 0.05 mV/s.

  24. After the test have finished, adjust the parameters (voltage range and current limit) to fit the complete curve in your range. A typical Cyclic Voltammetry curve may have a shape similar to a duck.

  25. Image1
  26. Once you have calibrated the test for raw electrode is time to compare the results between itself and the electrode with aptamer bonded. If your binding process have succeed you must find a decreasement between the current peak of the electrode with aptamers compared to the raw one. This decreasement is proportional to the quantity of aftamer bonded to the electrode surface as they are obstructing the electrons flow through the electrode surface.

  27. Image1
  28. To calibrate the minimum quantity of aptamer that you need to achieve your detection limits, you may carry out the same experiment but with different concentrations of the aptamer. At the end of this experiment you will be able to correlate the quantity of the aptamer bonded to your electrode with the cyclic voltammetry peak.

  29. Now your electrode is prepared to test it with your protein. You may set an incubation time and temperature depending on the individual interaction between each aptamer and protein. There is no protocol here. This will be a part of your individual results and its your work from now to adapt this protocol to your individual case. If your experiment succeed you will see a decreasement of current in the electrode with higher concentrations of aptamers. To see the outcome of our experiments check the results in the device section.

  30. Troubleshooting

  31. If after the measurement you can’t see any kind of signal or your noise is too high compared to the signal the problem may be caused by different sources. You should analyze the following things:

    1. Check if you don’t have enough current (current under 30 uA in Rodeostat) or you have current but so much noise. In the first case you should check the wiring because your circuit isn’t close. In the second case you should check possible noise sources near your system (like magnets or fluorescent lights).

    2. ADVICE: We have faced this kind of issue when we have connected the electrodes through alligator clips. The connection was not stable enough and the system have low current and too much noise. The solution was substituting the clips with oscilloscope probes. You could also solder the electrode to copper wires or consider to buy a commercial electrode adaptor.

    3. Check if in the electrode are appearing air bubbles when you run the measurement. This is a symptom of a wrong electrode connection. Check if you haven’t switch the connections of reference and counter electrode.

    4. If no current decreasing have achieve in the electrode with aptamers compared to the raw electrode check if you have followed correctly reduced the aptamers before following the binding protocol. Also check the concentration of aptamers that you have cast above the electrode.