(Prototype team page) |
|||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | {{Madrid-OLM}} | + | {{Madrid-OLM/1}} |
− | <html> | + | <html lang="en"> |
− | + | ||
− | + | <style> | |
− | + | .tittle-secc{ | |
− | + | padding-top: 8em !important; | |
− | + | } | |
− | < | + | .lesspad{ |
− | < | + | padding-right: 1em !important; |
− | < | + | padding-left: 1em !important; |
− | + | } | |
− | + | .ourlist{ | |
− | <div class=" | + | font-size: 80% !important; |
− | + | margin-bottom: 1em !important; | |
− | + | } | |
− | <div class=" | + | .nomargin{ |
− | <h1>Applied | + | margin-bottom: 0.4em !important; |
− | </ | + | } |
− | < | + | .figureimage{ |
− | + | margin-bottom: 0.5em | |
− | + | } | |
− | < | + | |
− | < | + | </style> |
− | + | <head> | |
− | + | <meta charset="utf-8"> | |
− | < | + | <title>Applied design</title> |
− | + | <meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
− | < | + | <meta name="description" content="Applied design"> |
− | + | </head> | |
− | </p> | + | <body class=" "> |
− | </ | + | <a id="start"></a> |
− | + | <div class="main-container"> | |
− | + | ||
− | < | + | <section class="tittle-secc text-center switchable feature-large"> |
− | < | + | <div class="container"> |
− | < | + | <div class="row justify-content-around boxed boxed--border bg--secondary boxed--lg box-shadow"> |
− | <p> | + | <div class="col-md-8 col-lg-8"> |
− | < | + | <h1 id="Teamtittle">Applied design</h1> |
− | <li>< | + | <p class="lead">The very process of designing begins when a brand new problematic is detected. Designing means visualizing. And applying a vision requires a feasible strategy.</p> |
− | <li>< | + | <p class="lead">When some of us joined our iGEM team, we had to introduce the project to our friends and families. Our message was simple enough to be explained in just a few words: “we want to design a way of measuring accurately any kind of molecule: viruses, bacterias, allergens”. We wanted to improve our society, and therefore build a better future for the upcoming generations.</p> |
− | <li>< | + | <p class="lead nomargin">We have explained in <a href="https://2018.igem.org/Team:Madrid-OLM/Description">our project description</a> that the challenge that we assume is creating the “<b>Internet of BioThings (IoBT)</b>”. To bring the IoBT to life, we have designed the following:</p> |
− | </ | + | <ol class="ourlist"> |
− | </div> | + | <li class="nomargin"><p class="lead">An affordable system of <a href="https://2018.igem.org/Team:Madrid-OLM/Aptamer">designing new aptamers</a>.</p></li> |
− | </div> | + | <li class="nomargin"><p class="lead">A piece of hardware able to measure the targeted protein concentration in a complex solution, and upload the results to the cloud in real-time. You could see it in <a href="https://2018.igem.org/Team:Madrid-OLM/FinalPrototype">our final device</a>.</p></li> |
− | + | <li><p class="lead">A mobile app that gathers the obtained data, for the user to visualize the information requested, i.e: the amount of allergens in an area.</p></li> | |
− | + | </ol> | |
− | + | <p class="lead ">Our team has defended the idea of <b>opening the design to everyone</b>, regardless their economic capacity. As iGEM is getting bigger, incorporating teams from every part of the world, it is mandatory to design projects able to be implemented worldwide, in a simple and affordable way.</p> | |
− | + | <p class="lead ">We have designed our product thinking about simple ways of manufacturing, as laser cutting and 3D printing. Due to this, <b>reproducibility</b> is almost ensured. We conceived a design for an universal user.</p> | |
− | + | <p class="lead nomargin">As the design is open to the whole community, another need that popped up was the <b>modularity</b> of our design. The design has been modular in the following aspects:</p> | |
− | + | <ol class="ourlist"> | |
− | + | <li class="nomargin"><p class="lead">Microfluidic workbench: we have generated a workbench to provide the user with a versatile workbench for microfluidics experimentation. Any chip might be tested.</p></li> | |
+ | <li class="nomargin"><p class="lead">The hardware design enables the user to test any aptasensor, regardless its composition. We have incorporated room for a potentiostat.</p></li> | ||
+ | <li><p class="lead">The mobile app gathers data from many measuring stations. Therefore the app might be more organic, or complex once a number of stations are enabled to share data with the app.</p></li> | ||
+ | </ol> | ||
+ | <p class="lead ">We would love to be consider for the Applied Design and serve as a positive orientation for those teams who want to think in a global thinking about design, integrating responsibility when conceiving new horizons, when designing brand new ideas and when realising their dreams.</p> | ||
+ | </div> | ||
+ | </div> | ||
+ | <!--end of row--> | ||
+ | </div> | ||
+ | <!--end of container--> | ||
+ | </section> | ||
+ | </div> | ||
+ | <!--<div class="loader"></div>--> | ||
+ | <a class="back-to-top inner-link" href="#start" data-scroll-class="100vh:active"> | ||
+ | <i class="stack-interface stack-up-open-big"></i> | ||
+ | </a> | ||
+ | </body> | ||
</html> | </html> | ||
+ | {{Madrid-OLM/footer}} |
Latest revision as of 03:59, 18 October 2018
Applied design
The very process of designing begins when a brand new problematic is detected. Designing means visualizing. And applying a vision requires a feasible strategy.
When some of us joined our iGEM team, we had to introduce the project to our friends and families. Our message was simple enough to be explained in just a few words: “we want to design a way of measuring accurately any kind of molecule: viruses, bacterias, allergens”. We wanted to improve our society, and therefore build a better future for the upcoming generations.
We have explained in our project description that the challenge that we assume is creating the “Internet of BioThings (IoBT)”. To bring the IoBT to life, we have designed the following:
An affordable system of designing new aptamers.
A piece of hardware able to measure the targeted protein concentration in a complex solution, and upload the results to the cloud in real-time. You could see it in our final device.
A mobile app that gathers the obtained data, for the user to visualize the information requested, i.e: the amount of allergens in an area.
Our team has defended the idea of opening the design to everyone, regardless their economic capacity. As iGEM is getting bigger, incorporating teams from every part of the world, it is mandatory to design projects able to be implemented worldwide, in a simple and affordable way.
We have designed our product thinking about simple ways of manufacturing, as laser cutting and 3D printing. Due to this, reproducibility is almost ensured. We conceived a design for an universal user.
As the design is open to the whole community, another need that popped up was the modularity of our design. The design has been modular in the following aspects:
Microfluidic workbench: we have generated a workbench to provide the user with a versatile workbench for microfluidics experimentation. Any chip might be tested.
The hardware design enables the user to test any aptasensor, regardless its composition. We have incorporated room for a potentiostat.
The mobile app gathers data from many measuring stations. Therefore the app might be more organic, or complex once a number of stations are enabled to share data with the app.
We would love to be consider for the Applied Design and serve as a positive orientation for those teams who want to think in a global thinking about design, integrating responsibility when conceiving new horizons, when designing brand new ideas and when realising their dreams.