(5 intermediate revisions by 2 users not shown) | |||
Line 28: | Line 28: | ||
} | } | ||
− | |||
− | |||
− | |||
</style> | </style> | ||
Line 70: | Line 67: | ||
<div class="block title" style="margin-top: 35px;"><h3 style="text-align: left;" id="Gold">Gold-coated membranes</h3></div> | <div class="block title" style="margin-top: 35px;"><h3 style="text-align: left;" id="Gold">Gold-coated membranes</h3></div> | ||
<div class="block full"> | <div class="block full"> | ||
− | <p>Sterlitech Polycarbonate Gold-Coated Membrane Filters represented one of the types of membranes we tested. The pores have a diameter of 0.4 micrometer, which is small enough to confine <i> Escherichia coli </i> bacteria, which diameter and size are respectively about 1 micrometer and 2 micrometers. These membranes were relatively easy to manipulate with a forceps because of their high flexibility.</p> | + | <p>Sterlitech Polycarbonate Gold-Coated Membrane Filters represented one of the types of membranes we tested. The pores have a diameter of 0.4 micrometer, which is small enough to confine <i> Escherichia coli </i> bacteria, which diameter and size are respectively about 1 micrometer and 2 micrometers. These membranes were relatively easy to manipulate with a forceps because of their high flexibility. Scanning electron microscopy by courtesy of Bruno Bresson, Sciences et Ingénierie de la Matière Molle |
+ | Physico-chimie des Polymères et Milieux Dispersés).</p> | ||
</div> | </div> | ||
<div class="block half"> | <div class="block half"> | ||
Line 78: | Line 76: | ||
<div class="block half"> | <div class="block half"> | ||
<img src="https://static.igem.org/mediawiki/2018/1/15/T--Pasteur_Paris--Gold-membrane-micro.jpg"> | <img src="https://static.igem.org/mediawiki/2018/1/15/T--Pasteur_Paris--Gold-membrane-micro.jpg"> | ||
− | <div class="legend"><b>Figure 3: </b>Gold-Coated Membrane | + | <div class="legend"><b>Figure 3: </b>Gold-Coated Membrane </div> |
− | + | ||
</div> | </div> | ||
Line 122: | Line 119: | ||
</div> | </div> | ||
− | |||
− | |||
<div class="block full"> | <div class="block full"> | ||
− | < | + | <img src="https://static.igem.org/mediawiki/2018/f/fd/T--Pasteur_Paris--Test-Filtre-2.jpg"> |
+ | <div class="legend"><b>Figure 10: </b>Membrane filter retaining bacteria on the left (PDMS impurities on the right)</div> | ||
</div> | </div> | ||
+ | |||
+ | <div class="block separator-mark"></div> | ||
<div class="block title"><h3 style="text-align: left;" id="Conductivity">Conductivity</h3></div> | <div class="block title"><h3 style="text-align: left;" id="Conductivity">Conductivity</h3></div> | ||
<div class="block full"> | <div class="block full"> | ||
− | <p>The second criterion for a fully functional interface is its ability to conduct a neuron’s influx. Thus, conductivity measurements were made for | + | <p>The second criterion for a fully functional interface is its ability to conduct a neuron’s influx. Thus, conductivity measurements were made for different types of membranes. Results indicated that bare alumina oxide and PEDOT:PSS-coated membranes showed similar conductivities, indicating the incomplete coating of PEDOT:PSS on alumina oxide membranes. On the opposite, PEDOT:Cl and PEDOT:Ts exhibit on average better conductivities, but in the same time, the coating of these membranes revealed by electron microscopy seemed to have covered the alumina oxide membranes in a more uniform way, ensuring enhanced conductive capabilities . These results can be criticized because of the high deviation and because the membranes conductivity was measured after several biofilms were grown on them, which may have affected the measurements. </p> |
+ | |||
+ | |||
+ | <div class="block full"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/5/50/T--Pasteur_Paris--Membrane-Conductivity.jpg" style="width:500px"> | ||
+ | <div class="legend"><b>Figure 11: </b>Membrane conductivity</div> | ||
</div> | </div> | ||
+ | |||
+ | </div> | ||
+ | |||
<div class="block separator-mark"></div> | <div class="block separator-mark"></div> | ||
+ | |||
+ | <div class="block title"><h3 style="text-align: left;" id="Biocompatibility">Biocompatibility</h3></div> | ||
+ | <div class="block full"> | ||
+ | <p> One last important property of the membranes is the capability of bacteria to form a biofilm on them, as in our prosthesis system, the membrane is going to be directly in contact with the genetically modified biofilm, as well as the human body. We conducted multiple series of biofilm culture on special culture wells designed by our team. Biofilm growth was measured for each type of membrane.</p> | ||
+ | </div> | ||
+ | <div class="block full"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/8/84/T--Pasteur_Paris--Biofilm-Growth.jpg" style="width:500px"> | ||
+ | <div class="legend"><b>Figure 12: </b>Biofilm growth</div> | ||
+ | </div> | ||
+ | |||
+ | <div class="block separator-mark"></div> | ||
+ | |||
<div class="block title"><h1>CONCLUSION</h1></div> | <div class="block title"><h1>CONCLUSION</h1></div> | ||
Line 141: | Line 159: | ||
<div class="block title"><h1>REFERENCES</h1></div> | <div class="block title"><h1>REFERENCES</h1></div> | ||
<div class="block full"> | <div class="block full"> | ||
− | <ul style="text-align: left;"> | + | <ul style="text-align: left;list-style: disc;"> |
<li style="list-style-type: decimal;">Jikui Wang, Guofeng Cai, Xudong Zhu, Xiaping Zhou, Oxidative Chemical Polymerization of 3,4-Ethylenedioxythiophene and its Applications in Antistatic coatings, Journal of Applied Polymer Science, 2012, Vol. 124, 109-115 .<br><br></li> | <li style="list-style-type: decimal;">Jikui Wang, Guofeng Cai, Xudong Zhu, Xiaping Zhou, Oxidative Chemical Polymerization of 3,4-Ethylenedioxythiophene and its Applications in Antistatic coatings, Journal of Applied Polymer Science, 2012, Vol. 124, 109-115 .<br><br></li> | ||
<li style="list-style-type: decimal;">Alexis E. Abelow, Kristin M. Persson, Edwin W.H. Jager, Magnus Berggren, Ilya Zharov, Electroresponsive Nanoporous Membranes by Coating Anodized Alumina with Poly(3,4ethylenedioxythiophene) and Polypyrrole. 2014, 299, 190-197.<br><br></li> | <li style="list-style-type: decimal;">Alexis E. Abelow, Kristin M. Persson, Edwin W.H. Jager, Magnus Berggren, Ilya Zharov, Electroresponsive Nanoporous Membranes by Coating Anodized Alumina with Poly(3,4ethylenedioxythiophene) and Polypyrrole. 2014, 299, 190-197.<br><br></li> | ||
Line 292: | Line 310: | ||
<div class="block title"><h1>REFERENCES</h1></div> | <div class="block title"><h1>REFERENCES</h1></div> | ||
<div class="block full"> | <div class="block full"> | ||
− | <ul style="text-align: left;"> | + | <ul style="text-align: left;list-style: disc;"> |
<li style="list-style-type: decimal;">Rigoard, P., Buffenoir, K., Wager, M., Bauche, S., Giot, J.-P., Robert, R., and Lapierre, F. (2009). Organisation anatomique et physiologique du nerf périphérique. /data/revues/00283770/v55sS1/S0028377008004025/.<br><br></li> | <li style="list-style-type: decimal;">Rigoard, P., Buffenoir, K., Wager, M., Bauche, S., Giot, J.-P., Robert, R., and Lapierre, F. (2009). Organisation anatomique et physiologique du nerf périphérique. /data/revues/00283770/v55sS1/S0028377008004025/.<br><br></li> | ||
<li style="list-style-type: decimal;"> https://www.studyblue.com/notes/note/n/chapter-11-nervous-system-ii-divisions-of-the-nervous-system/deck/8819508 <br><br></li> | <li style="list-style-type: decimal;"> https://www.studyblue.com/notes/note/n/chapter-11-nervous-system-ii-divisions-of-the-nervous-system/deck/8819508 <br><br></li> | ||
Line 459: | Line 477: | ||
<div class="block title"><h1>References</h1></div> | <div class="block title"><h1>References</h1></div> | ||
<div class="block full"> | <div class="block full"> | ||
− | <ul style="text-align: left;"> | + | <ul style="text-align: left; list-style: disc;"> |
<li style="list-style-type: decimal;">MicroProbes for Life Sciences, « Nerve Cuff Electrodes ». Retrieved Oct. 14th, 2018 from https://microprobes.com/products/peripheral-electrodes/nerve-cuff</li> | <li style="list-style-type: decimal;">MicroProbes for Life Sciences, « Nerve Cuff Electrodes ». Retrieved Oct. 14th, 2018 from https://microprobes.com/products/peripheral-electrodes/nerve-cuff</li> | ||
Latest revision as of 14:49, 10 November 2018
Membrane
When manipulating genetically engineered organisms, it is crucial to guarantee the confinement of these organisms. In our case, we want genetically modified bacteria to stay at the interface between the prosthesis and the external organic medium. At the same time, one of the main issues our project wants to tackle is the conduction of the neuron influx to the prosthesis. The answer to these questions came as a double solution: confinement of the bacteria by conductive nanoporous membranes. The membrane’s nanoporosity allows substances produced by our modified biofilm to pass through the membrane, but the bacteria remain confined. We tested the conductivity and biocompatibility of two types of membranes.
Membrane
Nerve and electrodes
As seen in the other parts of this wiki, we chose to use a nanoporous membrane in our device. The first goal of the membrane was to confine our biofilm, so it does not escape the prosthesis. Moreover, we also used our membrane as a conductive electrode. This solution was interesting since we didn’t have enough time to develop an entire electrical device which collects and treat the signal of the nerves. However, we know we still need to improve our interface if we want the patient to fully control his prosthesis. That is why we decided to look at what is already made in this field. So, first, we detailed how it is possible to model the electrical characteristics of a nerve. Then, we searched for information on electrodes and signal treatment.
This section is principally based on the thesis of Olivier Rossel: Dispositifs de measure et d’interprétation de l’activité d’un nerf. Electronique. Université Montpellier II - Sciences et Techniques du Languedoc, 2012. Français.