Difference between revisions of "Team:Pasteur Paris/Description"

 
(37 intermediate revisions by 9 users not shown)
Line 2: Line 2:
 
<html>
 
<html>
  
<style type="text/css">
+
  <style type="text/css">
#runningchip {
+
    #runningchip {
left: 125px;
+
      left: 125px;
}
+
    }
#hp_small {
+
    #project_small {
background-color: #292929;
+
      background-color: #292929;
}
+
    }
#bannerchanged{
+
    #bannerchanged{
    width: 100%;
+
          width: 100%;
    overflow: hidden;
+
          overflow: hidden;
    margin: 0 auto;
+
          margin: 0 auto;
}
+
    }
@media screen and (max-width: 760px) {
+
    @media screen and (max-width: 760px) {
/*#wrapper {
+
    /*#wrapper {
    width: 100%;
+
          width: 100%;
    overflow: hidden;
+
          overflow: hidden;
}
+
      }
#container {
+
    #container {
  width: 100%;
+
        width: 100%;
    margin: 0 auto;
+
          margin: 0 auto;
}*/
+
      }*/
.banner-img {
+
    .banner-img {
    width: 100%;
+
        width: 100%;
}
+
      }
}
+
    }
  
ul li{
+
  </style>
list-style: disc;
+
}
+
</style>
+
  
<div id="bannerchanged">
+
  <div id="bannerchanged">
 
                 <img class="banner-img" src="https://static.igem.org/mediawiki/2018/b/be/T--Pasteur_Paris--Banner_Overview.jpg">
 
                 <img class="banner-img" src="https://static.igem.org/mediawiki/2018/b/be/T--Pasteur_Paris--Banner_Overview.jpg">
 
         </div>
 
         </div>
<h1></h1>
+
    <h1></h1>
</div>
+
  </div>
  
  
<div id="GeneralContent">
+
  <div id="GeneralContent">
<div id="MainContent">
+
    <div id="MainContent">
<div class="block full">
+
 
<p>In science fiction movies, some amputees are equipped with incredibly efficient bionic prostheses that enable them to accomplish everyday gestures as any valid person would. At the beginning of our project, we wanted to understand why this kind of technology was not yet available. There are millions of amputees around the world, and presently, the very best equipment that can be offered to them is still far from equaling expectations or those seen in the movies. </p>
+
      <div class="block half">
<p>To solve this problem, our team of biologists, physicists, mathematicians, designers, and lawyers decided to tackle the problem from several angles. We had less than a year to develop our project, and we were resolute to come up with an innovation worthy of this major stake! </p>
+
        <h3 style="text-align: left;"></h3>
<p>We decided to create a universal biological interface that would be able to connect the residual nerves from the amputees’ limbs to the prostheses. The idea was to find a way to express neurotrophins (<i>e.g.</i> proNGF) from the inside of the prosthesis to help the nerves grow towards it. Bacteria secreting those proteins from the prosthetic interface showed up to be a good option. However, it implicated an ethical and technical challenge. With this innovation came the necessity to have the device surgically osseointegrated to the patient. This opened our minds to a huge challenge of orthopedic implants: infectious biofilms. They frequently develop around implants and cause heavy infections, very resistant to antibiotics. We decided to tackle both problems at the same time, using synthetic biology to add a barrier of protection against pathogenic bacteria directly into our device. </p>
+
        <p>In science fiction movies, some amputees are equipped with incredibly efficient <b>bionic prostheses</b> that enable them to accomplish <b>everyday gestures</b> as any valid person would. Presently, the very best equipment that can be offered to amputees is still far from what we can see in movies.</p>
<p>We designed this interface as something that could become the new standard, something that would then be connected to any bionic prosthesis, and that would allow a much greater control of the movement. We mixed synthetic biology with disciplines like physics and industrial design to come up with the following prototype (fig. 1). </p>
+
      </div>
</br>
+
      <div class="block half">
<img src="https://static.igem.org/mediawiki/2018/e/e0/T--Pasteur_Paris--Device.svg">
+
        <img src="https://static.igem.org/mediawiki/2018/f/f3/T--Pasteur_Paris--overviewamputee-04.png">
<div class="legend"><b>Figure 1: </b>Exploded drawing of NeuronArch's interface device</div>
+
      </div>
</br>
+
      <div class="block separator"></div>
<p>To do all of that, we decided to cover the inner part of the device with an engineered biofilm of <i>E. coli</i> bacteria. We gave them two main functions: the secretion of proNGF and the inhibition of <i>S. aureus</i> quorum sensing (fig. 2). </p>
+
      <div class="block separator-mark" style="margin: 0; opacity: 1; width: 25%"></div>
                                </br>
+
      <div class="block separator"></div>
<img src="https://static.igem.org/mediawiki/2018/1/13/T--Pasteur_Paris--ProjectOverview.svg">
+
 
<div class="legend"><b>Figure 2: </b>Overview of the biological functions of our genetically modified bacteria.</div>
+
      <div class="block half">
</br>
+
        <img src="https://static.igem.org/mediawiki/2018/2/22/T--Pasteur_Paris--Reconnect_nerves.jpg">
<p>Since we began working on NeuronArch, we have all endeavored to make it become something real. We hope you will have as much fun discovering our project through our wiki as we had making it! </p>
+
      </div>
</div>
+
      <div class="block half">
<div class="block two-third">
+
        <h3 style="text-align: left;"></h3>
<img src="https://static.igem.org/mediawiki/2018/a/a1/T--Pasteur_Paris--Signature.PNG">
+
        <p>We decided to create a <b>universal biological interface</b> that would be able to connect the residual nerves from the amputees’ limbs to the prostheses. <br>We came up with the idea of <b>coating</b> the implants with a genetically engineered biofilm. Bacteria secreting <b>neurotrophins</b> (e.g. proNGF) from the interface will help the nerves grow back towards the prosthesis.</p>
</div>
+
      </div>
</div>
+
<div class="block full">
</div>
+
       
 +
        <p style="text-align: center; text-indent: 0;"><i><b>With this innovation came the necessity to have the device surgically osseointegrated to the patient.</b></i></p>
 +
      </div>
 +
      <div class="block separator"></div>
 +
      <div class="block separator-mark" style="margin: 0; opacity: 1; width: 25%"></div>
 +
      <div class="block separator"></div>
 +
 
 +
      <div class="block half">
 +
        <h3 style="text-align: left;"></h3>
 +
        <p>This opened our minds to a huge challenge with orthopedic implants: <b>infectious biofilms</b>. They frequently develop around implants and cause heavy infections, very <b>resistant to antibiotics</b>. Our strategy concentrates efforts on fighting against <i>S. aureus</i>, by disturbing the <b>quorum sensing</b>. This mechanism regulates and coordinates the biofilm’s architecture and the production of toxins and virulence factors. </p>
 +
      </div>
 +
      <div class="block half">
 +
        <img src="https://static.igem.org/mediawiki/2018/8/89/T--Pasteur_Paris--overviewInfectionsref.jpg">
 +
      </div>
 +
      <div class="block separator"></div>
 +
      <div class="block separator-mark" style="margin: 0; opacity: 1; width: 25%"></div>
 +
      <div class="block separator"></div>
 +
<div class="block full">
 +
       
 +
        <p style="text-align: center; text-indent: 0;"><i><b>We decided to tackle both problems, <b>connection</b> and <b>protection</b>, at the same time using synthetic biology to add a barrier of protection against pathogenic bacteria directly into our device.</i></b></p>
 +
      </div>
 +
 
 +
<div class="block two-third">
 +
        <img src="https://static.igem.org/mediawiki/2018/d/d9/T--Pasteur_Paris--ProjectOverview.png">
 +
</div>
 +
<div class="block separator"></div>
 +
      <div class="block separator-mark" style="margin: 0; opacity: 1; width: 25%"></div>
 +
      <div class="block separator"></div>
 +
      <div class="block full">
 +
        <img src="https://static.igem.org/mediawiki/2018/3/3d/T--Pasteur_Paris--Recap.png">
 +
</div>
 +
<div class="block separator"></div>
 +
      <div class="block separator-mark" style="margin: 0; opacity: 1; width: 25%"></div>
 +
      <div class="block separator"></div>
 +
<div class="block half">
 +
        <h3 style="text-align: left;"></h3>
 +
        <p>We designed this <b>interface</b> as something that could become the <b>new standard</b>, something that would then be connected to any bionic prosthesis, and that would allow a much greater control of movements. We mixed synthetic biology with disciplines like physics and industrial design to come up with the following <b>prototype</b>. </p>
 +
      </div>
 +
<div class="block half">
 +
        <img src="https://static.igem.org/mediawiki/2018/1/1f/T--Pasteur_Paris--Device1.jpg">
 +
      </div>
 +
<div class="block separator"></div>
 +
      <div class="block separator-mark" style="margin: 0; opacity: 1; width: 25%"></div>
 +
      <div class="block separator"></div>
 +
<div class="block full">
 +
       
 +
        <p style="text-align: center; text-indent: 0;">Since we began working on <b>NeuronArch</b>, we have all endeavored to make it become something real.</br> We hope you will have as much fun discovering our project through our wiki as we had making it.</p>
 +
      </div>
 +
 
 +
      <div class="block full">
 +
        <img src="https://static.igem.org/mediawiki/2018/a/a1/T--Pasteur_Paris--Signature.PNG">
 +
</div>
 +
      <div class="block half">
 +
        <h3 style="text-align: left;"></h3>
 +
        <p></p>
 +
      </div>
 +
 
 +
 
 +
      <div class="block half">
 +
        <h3 style="text-align: left;"></h3>
 +
        <p></p>
 +
      </div>
 +
<div class="block title"><h1 id="References">REFERENCES</h1></div>
 +
            <div class="block full">
 +
                <ul style="text-align: left; list-style: disc;">
 +
                    <li style="list-style-type: decimal;">P. F. Pasquina, B. N. Perry, M. E. Miller, G. S. F. Ling, and J. W. Tsao, “Recent advances in bioelectric prostheses,” Neurol. Clin. Pract., vol. 5, no. 2, pp. 164–170, Apr. 2015.<br><br></li>
 +
                    <li style="list-style-type: decimal;">R. O. Darouiche, “Treatment of Infections Associated with Surgical Implants,”N. Engl. J. Med., vol. 350, no. 14, pp. 1422–1429, Apr. 2004.  .<br><br></li>
 +
                    <li style="list-style-type: decimal;">S. S. Magill et al., “Multistate Point-Prevalence Survey of Health Care–Associated Infections,” N. Engl. J. Med., vol. 370, no. 13, pp. 1198–1208, 2014.<br><br></li>
 +
                   
 +
 +
</div>
 +
  </div>
 
</html>
 
</html>

Latest revision as of 16:52, 6 December 2018

""

In science fiction movies, some amputees are equipped with incredibly efficient bionic prostheses that enable them to accomplish everyday gestures as any valid person would. Presently, the very best equipment that can be offered to amputees is still far from what we can see in movies.

We decided to create a universal biological interface that would be able to connect the residual nerves from the amputees’ limbs to the prostheses.
We came up with the idea of coating the implants with a genetically engineered biofilm. Bacteria secreting neurotrophins (e.g. proNGF) from the interface will help the nerves grow back towards the prosthesis.

With this innovation came the necessity to have the device surgically osseointegrated to the patient.

This opened our minds to a huge challenge with orthopedic implants: infectious biofilms. They frequently develop around implants and cause heavy infections, very resistant to antibiotics. Our strategy concentrates efforts on fighting against S. aureus, by disturbing the quorum sensing. This mechanism regulates and coordinates the biofilm’s architecture and the production of toxins and virulence factors.

We decided to tackle both problems, connection and protection, at the same time using synthetic biology to add a barrier of protection against pathogenic bacteria directly into our device.

We designed this interface as something that could become the new standard, something that would then be connected to any bionic prosthesis, and that would allow a much greater control of movements. We mixed synthetic biology with disciplines like physics and industrial design to come up with the following prototype.

Since we began working on NeuronArch, we have all endeavored to make it become something real.
We hope you will have as much fun discovering our project through our wiki as we had making it.

REFERENCES

  • P. F. Pasquina, B. N. Perry, M. E. Miller, G. S. F. Ling, and J. W. Tsao, “Recent advances in bioelectric prostheses,” Neurol. Clin. Pract., vol. 5, no. 2, pp. 164–170, Apr. 2015.

  • R. O. Darouiche, “Treatment of Infections Associated with Surgical Implants,”N. Engl. J. Med., vol. 350, no. 14, pp. 1422–1429, Apr. 2004. .

  • S. S. Magill et al., “Multistate Point-Prevalence Survey of Health Care–Associated Infections,” N. Engl. J. Med., vol. 370, no. 13, pp. 1198–1208, 2014.