Line 1: | Line 1: | ||
− | + | <html> | |
<head> | <head> | ||
<meta charset="UTF-8"> | <meta charset="UTF-8"> | ||
Line 178: | Line 178: | ||
</div> | </div> | ||
</body> | </body> | ||
+ | </html> |
Revision as of 12:19, 6 August 2018
Glyphosate on my plate?!
A bacterial roundup solution to the glyphosate controversy
Feeding the steadily increasing world population is a major task that relies heavily on the use of fertilizers and herbicides. Glyphosate is the prominent example for a total-herbicide. Glyphosate has been the most used herbicide in the US for the past decades, while still showing an upward trend in its usage rate. The Herbicide is a controversial substance, as its effects on human health and the environment still remains unsure, with some sources stating the suspicion for it to be carcinogenic. It also could pose a threat to biodiversity, but no real long-term studies have been carried out so far in this regard. Our team has set itself the goal to approach the glyphosate controversy through a microbial reporter system, using the well-known model organism Bacillus subtilis. This system should be able to detect and indicate the presence of glyphosate. During our studies we also aim to enhance the understanding of the effects of glyphosate on bacteria. We want to show how it is taken up into the bacterial cell and which pathways are affected by it. We will present our work on the development of glyphosate-resistant B. subtilis strains. Using these suppressor mutants, we could for the first time identify a protein that is capable of transporting glyphosate. The glyphosate-resistant strains could even provide the possibility to develop a glyphosate degradation pathway, based on the hypothesis that Bacillus might use glyphosate as its carbon source. Our human practice section is dedicated to the raise of awareness for Glyphosate and microbial research, while simultaneously cooperating with other scientific labs to achieve our goal. In the end, this should provide an updated view on the Glyphosate controversy with renewed insights into the effects of the herbicide on organisms and possibly solution approaches with Glyphosate resistances.
iGEM-Team Göttingen, Georg-August University Göttingen, Germany
Members: | Rica Bremenkamp, Malte Holmer, Jonas Jennrich, Veronika Lutz, Janek Meißner, Lisa Schulz, Robert Warneke, Marie Wensien, Dennis Wicke |
---|---|
Supervisors: | Prof. Jörg Stülke, Dr. Fabian Commichau |
E-mail: | igem2018@gwdg.de |
---|---|
Adress: | c/o iGEM 2018 |
Department of General Microbiology | |
Grisebachstraße | |
37077 Göttingen | |
Germany |
We are especially grateful to our numerous sponsors on gofundme, who supported our project and made it possible.
Every donor, who helped us to achieve our goals got a special place on our bacterial wall of fame and a handdrawn microbe to show our appreciation. A link to that wall can be found here: